BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 29222918)

  • 21. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation.
    Appenroth KJ; Krech K; Keresztes A; Fischer W; Koloczek H
    Chemosphere; 2010 Jan; 78(3):216-23. PubMed ID: 19945735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of biomass production, crude protein and starch content in laboratory wastewater treatment systems planted with
    Iatrou EI; Kora E; Stasinakis AS
    Environ Technol; 2019 Aug; 40(20):2649-2656. PubMed ID: 29502496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative Analysis of Microbial Communities in Fronds and Roots of Three Duckweed Species: Spirodela polyrhiza, Lemna minor, and Lemna aequinoctialis.
    Iwashita T; Tanaka Y; Tamaki H; Yoneda Y; Makino A; Tateno Y; Li Y; Toyama T; Kamagata Y; Mori K
    Microbes Environ; 2020; 35(3):. PubMed ID: 32684532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into the structural and physicochemical properties of small granular starches from two hydrophyte duckweeds, Spirodela oligorrhiza and Lemna minor.
    Chen L; Yu C; Ma Y; Xu H; Wang S; Wang Y; Liu X; Zhou G
    Carbohydr Res; 2016 Nov; 435():208-214. PubMed ID: 27816839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater.
    Zhao Z; Shi H; Liu Y; Zhao H; Su H; Wang M; Zhao Y
    Bioresour Technol; 2014 Sep; 167():383-9. PubMed ID: 24998479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodiversity of Duckweed (Lemnaceae) in Water Reservoirs of Ukraine and China Assessed by Chloroplast DNA Barcoding.
    Chen G; Stepanenko A; Lakhneko O; Zhou Y; Kishchenko O; Peterson A; Cui D; Zhu H; Xu J; Morgun B; Gudkov D; Friesen N; Borysyuk M
    Plants (Basel); 2022 May; 11(11):. PubMed ID: 35684242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.).
    Zhang X; Hu Y; Liu Y; Chen B
    J Environ Sci (China); 2011; 23(4):601-6. PubMed ID: 21793402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterisation of circadian rhythms of various duckweeds.
    Muranaka T; Okada M; Yomo J; Kubota S; Oyama T
    Plant Biol (Stuttg); 2015 Jan; 17 Suppl 1():66-74. PubMed ID: 24942699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiological and Transcriptomic Analysis Reveals Distorted Ion Homeostasis and Responses in the Freshwater Plant
    Fu L; Ding Z; Sun X; Zhang J
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31554307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent.
    Toyama T; Hanaoka T; Tanaka Y; Morikawa M; Mori K
    Bioresour Technol; 2018 Feb; 250():464-473. PubMed ID: 29197273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth Promotion of Giant Duckweed
    Toyama T; Mori K; Tanaka Y; Ike M; Morikawa M
    Mol Plant Microbe Interact; 2022 Jan; 35(1):28-38. PubMed ID: 34622686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia.
    Hoang PTN; Schubert I
    Chromosoma; 2017 Dec; 126(6):729-739. PubMed ID: 28756515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed).
    Wang W; Messing J
    BMC Plant Biol; 2012 Jan; 12():5. PubMed ID: 22235974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The biological responses and metal phytoaccumulation of duckweed Spirodela polyrhiza to manganese and chromium.
    Liu Y; Sanguanphun T; Yuan W; Cheng JJ; Meetam M
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19104-19113. PubMed ID: 28660513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nutritional value of duckweeds (Lemnaceae) as human food.
    Appenroth KJ; Sree KS; Böhm V; Hammann S; Vetter W; Leiterer M; Jahreis G
    Food Chem; 2017 Feb; 217():266-273. PubMed ID: 27664634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light intensity drives different growth strategies in two duckweed species:
    Strzałek M; Kufel L
    PeerJ; 2021; 9():e12698. PubMed ID: 35036168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation.
    Singh V; Pandey B; Suthar S
    Chemosphere; 2018 Jun; 201():492-502. PubMed ID: 29529576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphological and metabolic alterations in duckweed (Spirodela polyrhiza) on long-term low-level chronic UV-B exposure.
    Farooq M; Shankar U; Ray RS; Misra RB; Agrawal N; Verma K; Hans RK
    Ecotoxicol Environ Saf; 2005 Nov; 62(3):408-14. PubMed ID: 16216635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using proteomic analysis to investigate uniconazole-induced phytohormone variation and starch accumulation in duckweed (Landoltia punctata).
    Huang M; Fang Y; Liu Y; Jin Y; Sun J; Tao X; Ma X; He K; Zhao H
    BMC Biotechnol; 2015 Sep; 15():81. PubMed ID: 26369558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Limitation of current probe design for oligo-cross-FISH, exemplified by chromosome evolution studies in duckweeds.
    Hoang PTN; Rouillard JM; Macas J; Kubalová I; Schubert V; Schubert I
    Chromosoma; 2021 Mar; 130(1):15-25. PubMed ID: 33443586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.