BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29222961)

  • 81. [Metabolic zonation of liver parenchyma. Regulation of the glucostat of the liver].
    Jungermann K
    Naturwissenschaften; 1985 Feb; 72(2):76-84. PubMed ID: 3990823
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Zonated iron deposition in the periportal zone of the liver is associated with selectively enhanced lipid synthesis.
    Yang Q; Wu Y; Liu W; Ou X; Zhang W; Wang J; Chang Y; Wang F; Gao M; Liu S
    Liver Int; 2024 Feb; 44(2):589-602. PubMed ID: 38082474
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Antagonistic reaction of the periportal and perivenous zone in the rat liver after castration and estrogen treatment. Histochemical and biochemical studies on G6PDH and malic enzyme activity.
    Sasse D; Möllinger H; Wimmer M
    Histochemistry; 1983; 79(3):383-95. PubMed ID: 6654702
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Karyometric investigation on circadian rhythmic changes in the periportal and perivenous zones of the acinus of the rat liver.
    Schultz M; Hildebrand R
    Cell Tissue Res; 1983; 231(3):643-54. PubMed ID: 6871975
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Characterization of hepatic zonation in mice by mass-spectrometric and antibody-based proteomics approaches.
    Kling S; Lang B; Hammer HS; Naboulsi W; Sprenger H; Frenzel F; Pötz O; Schwarz M; Braeuning A; Templin MF
    Biol Chem; 2022 Feb; 403(3):331-343. PubMed ID: 34599868
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Methods for the study of liver cell heterogeneity.
    Katz NR
    Histochem J; 1989; 21(9-10):517-29. PubMed ID: 2687211
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Microbiochemical investigation on diurnal rhythmic changes of the activities of the lactate dehydrogenase in the periportal and perivenous zones of the acinus of the rat liver.
    Hildebrand R; Fuchs C
    Histochemistry; 1984; 81(5):477-83. PubMed ID: 6542909
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Functional hepatocellular heterogeneity.
    Jungermann K; Katz N
    Hepatology; 1982; 2(3):385-95. PubMed ID: 7042508
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A high-fat, high-fructose diet induced hepatic steatosis, renal lesions, dyslipidemia, and hyperuricemia in non-obese rats.
    Yustisia I; Tandiari D; Cangara MH; Hamid F; Daud NA
    Heliyon; 2022 Oct; 8(10):e10896. PubMed ID: 36247176
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes.
    Abdelmalek MF; Lazo M; Horska A; Bonekamp S; Lipkin EW; Balasubramanyam A; Bantle JP; Johnson RJ; Diehl AM; Clark JM;
    Hepatology; 2012 Sep; 56(3):952-60. PubMed ID: 22467259
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Fructose-induced hyperuricemia is associated with a decreased renal uric acid excretion in humans.
    Lecoultre V; Egli L; Theytaz F; Despland C; Schneiter P; Tappy L
    Diabetes Care; 2013 Sep; 36(9):e149-50. PubMed ID: 23970726
    [No Abstract]   [Full Text] [Related]  

  • 92. Fetal programming of hepatic lobular architecture in the rat demonstrated ex vivo with magnetic resonance imaging.
    Burns SP; Regan G; Murphy HC; Kinchesh P
    NMR Biomed; 2000 Apr; 13(2):82-91. PubMed ID: 10797636
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Multiplex Immunofluorescence for Detection of Spatial Distributions of Infiltrating T Cells Within Different Regions of Hepatic Lobules During Liver Transplantation Rejection.
    Li SP; Zhou GP; Sun J; Cui B; Zhang HM; Wei L; Sun LY; Zhu ZJ
    Inflammation; 2022 Apr; 45(2):651-664. PubMed ID: 34705187
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Hepatic autophagy is differentially regulated in periportal and pericentral zones - a general mechanism relevant for other tissues?
    Gebhardt R; Coffer PJ
    Cell Commun Signal; 2013 Mar; 11(1):21. PubMed ID: 23531205
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Letter: Fructose and hyperuricemia.
    Al-Hujaj M; Schonthal H
    Metabolism; 1975 Jul; 24(7):899-900. PubMed ID: 1138161
    [No Abstract]   [Full Text] [Related]  

  • 96. Fructose-induced hyperuricaemia.
    Stirpe F; Della Corte E; Bonetti E; Abbondanza A; Abbati A; De Stefano F
    Lancet; 1970 Dec; 2(7686):1310-1. PubMed ID: 4098798
    [No Abstract]   [Full Text] [Related]  

  • 97. Ammonia and uric acid formation after rapid intravenous fructose administration to healthy subjects and patients with compensated cirrhosis of the liver.
    Brodan V; Brodanová M; Kuhn E; Filip J; Pechar J
    Nutr Metab; 1975; 19(5-6):233-41. PubMed ID: 785305
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Fructose-induced hyperuricaemia.
    Heuckenkamp PU; Zöllner N
    Lancet; 1971 Apr; 1(7703):808-9. PubMed ID: 4101315
    [No Abstract]   [Full Text] [Related]  

  • 99. Absence of fructose-induced hyperuricaemia in men.
    Curreri PW; Pruitt BA
    Lancet; 1970 Apr; 1(7651):839. PubMed ID: 4191459
    [No Abstract]   [Full Text] [Related]  

  • 100. Importance of the selected cut-offs for serum uric acid and lipids levels.
    Kayadibi H; Sertoglu E; Uyanik M
    ScientificWorldJournal; 2014; 2014():746561. PubMed ID: 24959625
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.