BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29223005)

  • 1. The emerging role of systems biology for engineering protein production in CHO cells.
    Kuo CC; Chiang AW; Shamie I; Samoudi M; Gutierrez JM; Lewis NE
    Curr Opin Biotechnol; 2018 Jun; 51():64-69. PubMed ID: 29223005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology.
    Kildegaard HF; Baycin-Hizal D; Lewis NE; Betenbaugh MJ
    Curr Opin Biotechnol; 2013 Dec; 24(6):1102-7. PubMed ID: 23523260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.
    Gutierrez JM; Lewis NE
    Biotechnol J; 2015 Jul; 10(7):939-49. PubMed ID: 26099571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.
    Fischer S; Handrick R; Otte K
    Biotechnol Adv; 2015 Dec; 33(8):1878-96. PubMed ID: 26523782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CHO-Omics Review: The Impact of Current and Emerging Technologies on Chinese Hamster Ovary Based Bioproduction.
    Stolfa G; Smonskey MT; Boniface R; Hachmann AB; Gulde P; Joshi AD; Pierce AP; Jacobia SJ; Campbell A
    Biotechnol J; 2018 Mar; 13(3):e1700227. PubMed ID: 29072373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CHO cells in biotechnology for production of recombinant proteins: current state and further potential.
    Kim JY; Kim YG; Lee GM
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):917-30. PubMed ID: 22159888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable overexpression of miR-17 enhances recombinant protein production of CHO cells.
    Jadhav V; Hackl M; Klanert G; Hernandez Bort JA; Kunert R; Grillari J; Borth N
    J Biotechnol; 2014 Apr; 175(100):38-44. PubMed ID: 24518263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential of emerging sub-omics technologies for CHO cell engineering.
    Jerabek T; Keysberg C; Otte K
    Biotechnol Adv; 2022 Oct; 59():107978. PubMed ID: 35569699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycoengineering in CHO Cells: Advances in Systems Biology.
    Tejwani V; Andersen MR; Nam JH; Sharfstein ST
    Biotechnol J; 2018 Mar; 13(3):e1700234. PubMed ID: 29316325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A platform for context-specific genetic engineering of recombinant protein production by CHO cells.
    Cartwright JF; Arnall CL; Patel YD; Barber NOW; Lovelady CS; Rosignoli G; Harris CL; Dunn S; Field RP; Dean G; Daramola O; Gibson SJ; Peden AA; Brown AJ; Hatton D; James DC
    J Biotechnol; 2020 Mar; 312():11-22. PubMed ID: 32114154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An 'omics approach towards CHO cell engineering.
    Datta P; Linhardt RJ; Sharfstein ST
    Biotechnol Bioeng; 2013 May; 110(5):1255-71. PubMed ID: 23322664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic biology approaches for dynamic CHO cell engineering.
    Donaldson J; Kleinjan DJ; Rosser S
    Curr Opin Biotechnol; 2022 Dec; 78():102806. PubMed ID: 36194920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precision control of recombinant gene transcription for CHO cell synthetic biology.
    Brown AJ; James DC
    Biotechnol Adv; 2016; 34(5):492-503. PubMed ID: 26721629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimizing Clonal Variation during Mammalian Cell Line Engineering for Improved Systems Biology Data Generation.
    Grav LM; Sergeeva D; Lee JS; Marin de Mas I; Lewis NE; Andersen MR; Nielsen LK; Lee GM; Kildegaard HF
    ACS Synth Biol; 2018 Sep; 7(9):2148-2159. PubMed ID: 30060646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives.
    Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H
    Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reflection on the improvement of Chinese hamster ovary cell-based bioprocesses through advances in proteomic techniques.
    Nguyen M; Zimmer A
    Biotechnol Adv; 2023; 65():108141. PubMed ID: 37001570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem.
    Dahodwala H; Lee KH
    Curr Opin Biotechnol; 2019 Dec; 60():128-137. PubMed ID: 30826670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity.
    Mead EJ; Masterton RJ; Feary M; Obrezanova O; Zhang L; Young R; Smales CM
    Biochem J; 2015 Dec; 472(3):261-73. PubMed ID: 26420881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells.
    Chevallier V; Andersen MR; Malphettes L
    Biotechnol Bioeng; 2020 Apr; 117(4):1172-1186. PubMed ID: 31814104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions.
    Hansen HG; Pristovšek N; Kildegaard HF; Lee GM
    Biotechnol Adv; 2017; 35(1):64-76. PubMed ID: 27931938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.