These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29223015)

  • 1. Thiamine accumulation and thiamine triphosphate decline occur in parallel with ATP exhaustion during postmortem aging of pork muscles.
    Muroya S; Oe M; Ojima K
    Meat Sci; 2018 Mar; 137():228-234. PubMed ID: 29223015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CE-TOF MS-based metabolomic profiling revealed characteristic metabolic pathways in postmortem porcine fast and slow type muscles.
    Muroya S; Oe M; Nakajima I; Ojima K; Chikuni K
    Meat Sci; 2014 Dec; 98(4):726-35. PubMed ID: 25105492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors.
    Bettendorff L; Wins P
    FEBS J; 2009 Jun; 276(11):2917-25. PubMed ID: 19490098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenylate kinase-independent thiamine triphosphate accumulation under severe energy stress in Escherichia coli.
    Gigliobianco T; Lakaye B; Makarchikov AF; Wins P; Bettendorff L
    BMC Microbiol; 2008 Jan; 8():16. PubMed ID: 18215312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress.
    Gigliobianco T; Lakaye B; Wins P; El Moualij B; Zorzi W; Bettendorff L
    BMC Microbiol; 2010 May; 10():148. PubMed ID: 20492686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels.
    Makarchikov AF; Wins P; Janssen E; Wieringa B; Grisar T; Bettendorff L
    Biochim Biophys Acta; 2002 Oct; 1592(2):117-21. PubMed ID: 12379473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can postmortem proteolysis explain tenderness differences in various bovine muscles?
    Veiseth-Kent E; Pedersen ME; Rønning SB; Rødbotten R
    Meat Sci; 2018 Mar; 137():114-122. PubMed ID: 29169065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal development of thiamine metabolism in rat skeletal muscle.
    Matsuda T; Tonomura H; Baba A; Iwata H
    Int J Biochem; 1991; 23(2):203-6. PubMed ID: 1847884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postmortem mitochondria function in longissimus lumborum of Angus and Brahman steers.
    Ramos PM; Wohlgemuth SE; Gingerich CA; Hawryluk B; Smith MT; Bell LC; Scheffler TL
    Meat Sci; 2024 Sep; 215():109538. PubMed ID: 38772311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature and pH on postmortem color development of porcine M. longissimus dorsi and M. semimembranosus.
    Duan Y; Huang L; Xie J; Yang K; Yuan F; Bruce HL; Plastow GS; Ma J; Huang L
    J Sci Food Agric; 2013 Mar; 93(5):1206-10. PubMed ID: 23165775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of extended aging on calpain-1 and -2 activity in beef longissimus lumborum and semimembranosus muscles.
    Colle MJ; Doumit ME
    Meat Sci; 2017 Sep; 131():142-145. PubMed ID: 28527364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on ATP: thiamine diphosphate phosphotransferase activity in rat brain.
    Schrijver J; Dias T; Hommes FA
    Neurochem Res; 1978 Dec; 3(6):699-709. PubMed ID: 216945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain.
    Gangolf M; Wins P; Thiry M; El Moualij B; Bettendorff L
    J Biol Chem; 2010 Jan; 285(1):583-94. PubMed ID: 19906644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomic approach to key metabolites characterizing postmortem aged loin muscle of Japanese Black (Wagyu) cattle.
    Muroya S; Oe M; Ojima K; Watanabe A
    Asian-Australas J Anim Sci; 2019 Aug; 32(8):1172-1185. PubMed ID: 30744349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria changes and metabolome differences of bovine longissimus lumborum and psoas major during 24 h postmortem.
    Yu Q; Tian X; Shao L; Li X; Dai R
    Meat Sci; 2020 Aug; 166():108112. PubMed ID: 32302932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of boning method and postmortem aging on meat quality characteristics of pork loin.
    Li C; Wu J; Zhang N; Zhang S; Liu J; Li J; Li H; Feng X; Han Y; Zhu Z; Xu X; Zhou G
    Anim Sci J; 2009 Oct; 80(5):591-6. PubMed ID: 20163625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiamine triphosphate: a ubiquitous molecule in search of a physiological role.
    Bettendorff L; Lakaye B; Kohn G; Wins P
    Metab Brain Dis; 2014 Dec; 29(4):1069-82. PubMed ID: 24590690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted metabolomics to reveal muscle-specific energy metabolism between bovine longissimus lumborum and psoas major during early postmortem periods.
    Yu Q; Tian X; Shao L; Li X; Dai R
    Meat Sci; 2019 Oct; 156():166-173. PubMed ID: 31181502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolysis and synthesis of thiamin triphosphate in bacteria.
    Nishimune T; Hayashi R
    J Nutr Sci Vitaminol (Tokyo); 1987 Apr; 33(2):113-27. PubMed ID: 3039089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals.
    Makarchikov AF; Lakaye B; Gulyai IE; Czerniecki J; Coumans B; Wins P; Grisar T; Bettendorff L
    Cell Mol Life Sci; 2003 Jul; 60(7):1477-88. PubMed ID: 12943234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.