These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29223021)

  • 1. Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum.
    Arfaoui A; El Hadrami A; Daayf F
    Plant Physiol Biochem; 2018 Jan; 122():121-128. PubMed ID: 29223021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean.
    Zhang F; Ge H; Zhang F; Guo N; Wang Y; Chen L; Ji X; Li C
    Plant Physiol Biochem; 2016 Mar; 100():64-74. PubMed ID: 26774866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic response of soybean plants to Sclerotinia sclerotiorum infection.
    de Oliveira CS; Lião LM; Alcantara GB
    Phytochemistry; 2019 Nov; 167():112099. PubMed ID: 31476575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene regulation of Sclerotinia sclerotiorum during infection of Glycine max: on the road to pathogenesis.
    Westrick NM; Ranjan A; Jain S; Grau CR; Smith DL; Kabbage M
    BMC Genomics; 2019 Feb; 20(1):157. PubMed ID: 30808300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction.
    Fagundes-Nacarath IRF; Debona D; Rodrigues FA
    Plant Physiol Biochem; 2018 Aug; 129():109-121. PubMed ID: 29870862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pathogenic development of Sclerotinia sclerotiorum in soybean requires specific host NADPH oxidases.
    Ranjan A; Jayaraman D; Grau C; Hill JH; Whitham SA; Ané JM; Smith DL; Kabbage M
    Mol Plant Pathol; 2018 Mar; 19(3):700-714. PubMed ID: 28378935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase.
    Yang X; Yang J; Wang Y; He H; Niu L; Guo D; Xing G; Zhao Q; Zhong X; Sui L; Li Q; Dong Y
    Transgenic Res; 2019 Feb; 28(1):103-114. PubMed ID: 30478526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of the chitinase gene CmCH1 from Coniothyrium minitans renders enhanced resistance to Sclerotinia sclerotiorum in soybean.
    Yang X; Yang J; Li H; Niu L; Xing G; Zhang Y; Xu W; Zhao Q; Li Q; Dong Y
    Transgenic Res; 2020 Apr; 29(2):187-198. PubMed ID: 31970612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in antioxidant systems in soybean as affected by Sclerotinia sclerotiorum (Lib.) de Bary.
    Malenčić D; Kiprovski B; Popović M; Prvulović D; Miladinović J; Djordjević V
    Plant Physiol Biochem; 2010; 48(10-11):903-8. PubMed ID: 20833552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment.
    Williams B; Kabbage M; Kim HJ; Britt R; Dickman MB
    PLoS Pathog; 2011 Jun; 7(6):e1002107. PubMed ID: 21738471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance against Sclerotinia sclerotiorum in soybean involves a reprogramming of the phenylpropanoid pathway and up-regulation of antifungal activity targeting ergosterol biosynthesis.
    Ranjan A; Westrick NM; Jain S; Piotrowski JS; Ranjan M; Kessens R; Stiegman L; Grau CR; Conley SP; Smith DL; Kabbage M
    Plant Biotechnol J; 2019 Aug; 17(8):1567-1581. PubMed ID: 30672092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide association mapping of resistance to a Brazilian isolate of Sclerotinia sclerotiorum in soybean genotypes mostly from Brazil.
    Wei W; Mesquita ACO; Figueiró AA; Wu X; Manjunatha S; Wickland DP; Hudson ME; Juliatti FC; Clough SJ
    BMC Genomics; 2017 Nov; 18(1):849. PubMed ID: 29115920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfection of Sclerotinia sclerotiorum with in vitro transcripts of a naturally occurring interspecific recombinant of Sclerotinia sclerotiorum hypovirus 2 significantly reduces virulence of the fungus.
    Marzano SY; Hobbs HA; Nelson BD; Hartman GL; Eastburn DM; McCoppin NK; Domier LL
    J Virol; 2015 May; 89(9):5060-71. PubMed ID: 25694604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of a Chitinase Gene from Trichoderma asperellum Increases Disease Resistance in Transgenic Soybean.
    Zhang F; Ruan X; Wang X; Liu Z; Hu L; Li C
    Appl Biochem Biotechnol; 2016 Dec; 180(8):1542-1558. PubMed ID: 27544774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Transcriptome Analysis of Host and Pathogen Highlights the Interaction Between Brassica oleracea and Sclerotinia sclerotiorum.
    Ding Y; Mei J; Chai Y; Yu Y; Shao C; Wu Q; Disi JO; Li Y; Wan H; Qian W
    Phytopathology; 2019 Apr; 109(4):542-550. PubMed ID: 30265202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SsSm1, a Cerato-platanin family protein, is involved in the hyphal development and pathogenic process of Sclerotinia sclerotiorum.
    Pan Y; Wei J; Yao C; Reng H; Gao Z
    Plant Sci; 2018 May; 270():37-46. PubMed ID: 29576085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome analyses suggest a disturbance of iron homeostasis in soybean leaves during white mould disease establishment.
    Calla B; Blahut-Beatty L; Koziol L; Simmonds DH; Clough SJ
    Mol Plant Pathol; 2014 Aug; 15(6):576-88. PubMed ID: 24330102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms by which the infection of Sclerotinia sclerotiorum (Lib.) de Bary affects the photosynthetic performance in tobacco leaves.
    Yang C; Zhang Z; Gao H; Liu M; Fan X
    BMC Plant Biol; 2014 Sep; 14():240. PubMed ID: 25246003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic evaluation of oxalate-degrading transgenic soybean in response to Sclerotinia sclerotiorum infection.
    Calla B; Blahut-Beatty L; Koziol L; Zhang Y; Neece DJ; Carbajulca D; Garcia A; Simmonds DH; Clough SJ
    Mol Plant Pathol; 2014 Aug; 15(6):563-75. PubMed ID: 24382019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.