BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29223153)

  • 1. Temperature Dependence of Tryptophan Fluorescence Lifetime in Aqueous Glycerol and Trehalose Solutions.
    Gorokhov VV; Knox PP; Korvatovskiy BN; Seifullina NK; Goryachev SN; Paschenko VZ
    Biochemistry (Mosc); 2017 Nov; 82(11):1269-1275. PubMed ID: 29223153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence for fluorescence of beta-NADH in glycerol/water solution and in trehalose/sucrose glass.
    Zelent B; Troxler T; Vanderkooi JM
    J Fluoresc; 2007 Jan; 17(1):37-42. PubMed ID: 17171438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan.
    Wright WW; Guffanti GT; Vanderkooi JM
    Biophys J; 2003 Sep; 85(3):1980-95. PubMed ID: 12944311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence heterogeneity of tryptophans in Na,K-ATPase: evidences for temperature-dependent energy transfer.
    Demchenko AP; Gallay J; Vincent M; Apell HJ
    Biophys Chem; 1998 Jun; 72(3):265-83. PubMed ID: 9691270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpretation of fluorescence decays in proteins using continuous lifetime distributions.
    Alcala JR; Gratton E; Prendergast FG
    Biophys J; 1987 Jun; 51(6):925-36. PubMed ID: 3607213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence of cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid: a single tryptophan chi(1) rotamer model.
    Liu B; Thalji RK; Adams PD; Fronczek FR; McLaughlin ML; Barkley MD
    J Am Chem Soc; 2002 Nov; 124(44):13329-38. PubMed ID: 12405862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of tryptophan fluorescence lifetimes in cyanobacterial photosystem I frozen in the light and in the dark.
    Knox PP; Korvatovskiy BN; Gorokhov VV; Goryachev SN; Mamedov MD; Paschenko VZ
    Photosynth Res; 2019 Mar; 139(1-3):441-448. PubMed ID: 30353420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosecond dynamics of horse heart apocytochrome c in aqueous solution as studied by time-resolved fluorescence of the single tryptophan residue (Trp-59).
    Vincent M; Brochon JC; Merola F; Jordi W; Gallay J
    Biochemistry; 1988 Nov; 27(24):8752-61. PubMed ID: 2853969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature Dependence of Tryptophan Fluorescence Lifetime as an Indicator of Its Microenvironment Dynamics.
    Gorokhov VV; Korvatovsky BN; Knox PP; Grishanova NP; Goryachev SN; Pashchenko VZ; Rubin AB
    Dokl Biochem Biophys; 2021 May; 498(1):170-176. PubMed ID: 34189644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved fluorescence of the single tryptophan of Bacillus stearothermophilus phosphofructokinase.
    Kim SJ; Chowdhury FN; Stryjewski W; Younathan ES; Russo PS; Barkley MD
    Biophys J; 1993 Jul; 65(1):215-26. PubMed ID: 8369432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy atom induced phosphorescence study on the influence of internal structural factors on the photophysics of tryptophan in aqueous solutions.
    Kowalska-Baron A; Gałęcki K; Rożniakowski K; Kolesińska B; Kamiński ZJ; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():830-7. PubMed ID: 24704600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Picosecond fluorescence decay in photolyzed lens protein alpha-crystallin.
    Borkman RF; Douhal A; Yoshihara K
    Biochemistry; 1993 May; 32(18):4787-92. PubMed ID: 8490023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MD + QM correlations with tryptophan fluorescence spectral shifts and lifetimes.
    Callis PR; Tusell JR
    Methods Mol Biol; 2014; 1076():171-214. PubMed ID: 24108627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of tryptophan fluorescence spectral shifts and lifetimes arising directly from heterogeneous environment.
    Pan CP; Muiño PL; Barkley MD; Callis PR
    J Phys Chem B; 2011 Mar; 115(12):3245-53. PubMed ID: 21370844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretation of fluorescence decays using a power-like model.
    Włodarczyk J; Kierdaszuk B
    Biophys J; 2003 Jul; 85(1):589-98. PubMed ID: 12829513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of temperature on the modification of spectral properties of tryptophan aqueous solutions induced by water previously treated with laser radiation].
    Romodanova EA; Diubko TS; Roshal' AD; Timaniuk VA
    Biofizika; 2006; 51(3):409-12. PubMed ID: 16808337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Heterogeneous Are Trehalose/Glycerol Cryoprotectant Mixtures? A Combined Time-Resolved Fluorescence and Computer Simulation Investigation.
    Indra S; Biswas R
    J Phys Chem B; 2016 Nov; 120(43):11214-11228. PubMed ID: 27723334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excited states of tryptophan in cod parvalbumin. Identification of a short-lived emitting triplet state at room temperature.
    Sudhakar K; Phillips CM; Williams SA; Vanderkooi JM
    Biophys J; 1993 May; 64(5):1503-11. PubMed ID: 8324187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.