These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Stably Transformed Lotus japonicus Plants Overexpressing Phytoglobin LjGlb1-1 Show Decreased Nitric Oxide Levels in Roots and Nodules as Well as Delayed Nodule Senescence. Fukudome M; Watanabe E; Osuki KI; Imaizumi R; Aoki T; Becana M; Uchiumi T Plant Cell Physiol; 2019 Apr; 60(4):816-825. PubMed ID: 30597068 [TBL] [Abstract][Full Text] [Related]
23. Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Watts-Williams SJ; Cavagnaro TR Plant Sci; 2018 Sep; 274():163-170. PubMed ID: 30080600 [TBL] [Abstract][Full Text] [Related]
24. Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin. Igamberdiev AU; Bykova NV; Hill RD Planta; 2006 Apr; 223(5):1033-40. PubMed ID: 16341544 [TBL] [Abstract][Full Text] [Related]
25. Heterologous expression of Vitreoscilla haemoglobin in barley (Hordeum vulgare). Wilhelmson A; Kallio PT; Oksman-Caldentey KM; Nuutila AM Plant Cell Rep; 2007 Oct; 26(10):1773-83. PubMed ID: 17569049 [TBL] [Abstract][Full Text] [Related]
26. Spatio-temporal expression of phytoglobin: a determining factor in the NO specification of cell fate. Stasolla C; Huang S; Hill RD; Igamberdiev AU J Exp Bot; 2019 Aug; 70(17):4365-4377. PubMed ID: 30838401 [TBL] [Abstract][Full Text] [Related]
27. Determining Cellular Responses: Phytoglobins May Direct the Traffic. Stasolla C; Hill RD Trends Plant Sci; 2017 Oct; 22(10):820-822. PubMed ID: 28882416 [TBL] [Abstract][Full Text] [Related]
28. Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. Gupta KJ; Shah JK; Brotman Y; Jahnke K; Willmitzer L; Kaiser WM; Bauwe H; Igamberdiev AU J Exp Bot; 2012 Feb; 63(4):1773-84. PubMed ID: 22371326 [TBL] [Abstract][Full Text] [Related]
29. Spatial identification of transcripts and biological processes in laser micro-dissected sub-regions of waterlogged corn roots with altered expression of phytoglobin. Youssef MS; Mira MM; Millar JL; Becker MG; Belmonte MF; Hill RD; Stasolla C Plant Physiol Biochem; 2019 Jun; 139():350-365. PubMed ID: 30952087 [TBL] [Abstract][Full Text] [Related]
30. Over-expression of the barley Phytoglobin 1 (HvPgb1) evokes leaf-specific transcriptional responses during root waterlogging. Hill RD; de Castro J; Mira MM; Igamberdiev AU; Hebelstrup KH; Renault S; Xu W; Badea A; Stasolla C J Plant Physiol; 2023 Apr; 283():153944. PubMed ID: 36933369 [TBL] [Abstract][Full Text] [Related]
31. Metabolic Changes in Seed Embryos of Hypoxia-Tolerant Rice and Hypoxia-Sensitive Barley at the Onset of Germination. Jayawardhane J; Wijesinghe MKPS; Bykova NV; Igamberdiev AU Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834819 [TBL] [Abstract][Full Text] [Related]
32. Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Bai X; Long J; He X; Yan J; Chen X; Tan Y; Li K; Chen L; Xu H Sci Rep; 2016 May; 6():26400. PubMed ID: 27211528 [TBL] [Abstract][Full Text] [Related]
33. Phytoglobins in the nuclei, cytoplasm and chloroplasts modulate nitric oxide signaling and interact with abscisic acid. Rubio MC; Calvo-Begueria L; Díaz-Mendoza M; Elhiti M; Moore M; Matamoros MA; James EK; Díaz I; Pérez-Rontomé C; Villar I; Sein-Echaluce VC; Hebelstrup KH; Dietz KJ; Becana M Plant J; 2019 Oct; 100(1):38-54. PubMed ID: 31148289 [TBL] [Abstract][Full Text] [Related]
34. Nitric oxide production is involved in maintaining energy state in Alfalfa (Medicago sativa L.) nodulated roots under both salinity and flooding. Aridhi F; Sghaier H; Gaitanaros A; Khadri A; Aschi-Smiti S; Brouquisse R Planta; 2020 Jul; 252(2):22. PubMed ID: 32676756 [TBL] [Abstract][Full Text] [Related]
35. Nitrate reductase-mediated nitric oxide production is involved in copper tolerance in shoots of hulless barley. Hu Y; You J; Liang X Plant Cell Rep; 2015 Mar; 34(3):367-79. PubMed ID: 25447636 [TBL] [Abstract][Full Text] [Related]
36. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Beligni MV; Fath A; Bethke PC; Lamattina L; Jones RL Plant Physiol; 2002 Aug; 129(4):1642-50. PubMed ID: 12177477 [TBL] [Abstract][Full Text] [Related]
37. Overexpression of the aphid-induced serine protease inhibitor CI2c gene in barley affects the generalist green peach aphid, not the specialist bird cherry-oat aphid. Losvik A; Beste L; Stephens J; Jonsson L PLoS One; 2018; 13(3):e0193816. PubMed ID: 29554141 [TBL] [Abstract][Full Text] [Related]
38. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. Wang N; Zhao J; He X; Sun H; Zhang G; Wu F BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796 [TBL] [Abstract][Full Text] [Related]
39. Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. Horie T; Kaneko T; Sugimoto G; Sasano S; Panda SK; Shibasaka M; Katsuhara M Plant Cell Physiol; 2011 Apr; 52(4):663-75. PubMed ID: 21441236 [TBL] [Abstract][Full Text] [Related]