These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 29223402)

  • 1. Genetic regulation mechanism of the yjdF riboswitch.
    Gong S; Wang Y; Wang Z; Wang Y; Zhang W
    J Theor Biol; 2018 Feb; 439():152-159. PubMed ID: 29223402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The yjdF riboswitch candidate regulates gene expression by binding diverse azaaromatic compounds.
    Li S; Hwang XY; Stav S; Breaker RR
    RNA; 2016 Apr; 22(4):530-41. PubMed ID: 26843526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic regulation mechanism of pbuE riboswitch.
    Gong S; Wang Y; Zhang W
    J Chem Phys; 2015 Jan; 142(1):015103. PubMed ID: 25573585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch.
    Cheng L; White EN; Brandt NL; Yu AM; Chen AA; Lucks JB
    Nucleic Acids Res; 2022 Nov; 50(21):12001-12018. PubMed ID: 35348734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bacterial yjdF riboswitch regulates translation through its tRNA-like fold.
    Trachman RJ; Passalacqua LFM; Ferré-D'Amaré AR
    J Biol Chem; 2022 Jun; 298(6):101934. PubMed ID: 35427649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches.
    Gong S; Wang Y; Wang Z; Zhang W
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28703767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation.
    Steinert H; Sochor F; Wacker A; Buck J; Helmling C; Hiller F; Keyhani S; Noeske J; Grimm S; Rudolph MM; Keller H; Mooney RA; Landick R; Suess B; Fürtig B; Wöhnert J; Schwalbe H
    Elife; 2017 May; 6():. PubMed ID: 28541183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of unfolding and regulation mechanism of preQ1 riboswitches.
    Gong Z; Zhao Y; Chen C; Xiao Y
    PLoS One; 2012; 7(9):e45239. PubMed ID: 23028870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.
    Marcano-Velázquez JG; Batey RT
    J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure.
    Suddala KC; Rinaldi AJ; Feng J; Mustoe AM; Eichhorn CD; Liberman JA; Wedekind JE; Al-Hashimi HM; Brooks CL; Walter NG
    Nucleic Acids Res; 2013 Dec; 41(22):10462-75. PubMed ID: 24003028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.
    Aboul-ela F; Huang W; Abd Elrahman M; Boyapati V; Li P
    Wiley Interdiscip Rev RNA; 2015; 6(6):631-50. PubMed ID: 26361734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinetics of ligand binding by an adenine-sensing riboswitch.
    Wickiser JK; Cheah MT; Breaker RR; Crothers DM
    Biochemistry; 2005 Oct; 44(40):13404-14. PubMed ID: 16201765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch.
    Perdrizet GA; Artsimovitch I; Furman R; Sosnick TR; Pan T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3323-8. PubMed ID: 22331895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch.
    Roy S; Hennelly SP; Lammert H; Onuchic JN; Sanbonmatsu KY
    Nucleic Acids Res; 2019 Apr; 47(6):3158-3170. PubMed ID: 30605518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
    Feng J; Walter NG; Brooks CL
    J Am Chem Soc; 2011 Mar; 133(12):4196-9. PubMed ID: 21375305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic and kinetic folding of riboswitches.
    Badelt S; Hammer S; Flamm C; Hofacker IL
    Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.