These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 29223426)

  • 1. Application of solidifiers for oil spill containment: A review.
    Motta FL; Stoyanov SR; Soares JBP
    Chemosphere; 2018 Mar; 194():837-846. PubMed ID: 29223426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of solidifiers used for oil spill remediation.
    Sundaravadivelu D; Suidan MT; Venosa AD; Rosales PI
    Chemosphere; 2016 Feb; 144():1490-7. PubMed ID: 26498096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and application of an amylopectin-graft-poly(methyl acrylate) solidifier for rapid and efficient containment and recovery of heavy oil spills in aqueous environments.
    Motta FL; Stoyanov SR; Soares JBP
    Chemosphere; 2019 Dec; 236():124352. PubMed ID: 31325825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Sugar-Based Gelator for Marine Oil-Spill Recovery.
    Vibhute AM; Muvvala V; Sureshan KM
    Angew Chem Int Ed Engl; 2016 Jun; 55(27):7782-5. PubMed ID: 26821611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametric study to determine the effect of temperature on oil solidifier performance and the development of a new empirical correlation for predicting effectiveness.
    Sundaravadivelu D; Suidan MT; Venosa AD
    Mar Pollut Bull; 2015 Jun; 95(1):297-304. PubMed ID: 25818855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An oil spill decision matrix in response to surface spills of various bitumen blends.
    King TL; Robinson B; Cui F; Boufadel M; Lee K; Clyburne JAC
    Environ Sci Process Impacts; 2017 Jul; 19(7):928-938. PubMed ID: 28613323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Far Are We in Combating Marine Oil Spills by Using Phase-Selective Organogelators?
    Vibhute AM; Sureshan KM
    ChemSusChem; 2020 Oct; 13(20):5343-5360. PubMed ID: 32808717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oil spill problems and sustainable response strategies through new technologies.
    Ivshina IB; Kuyukina MS; Krivoruchko AV; Elkin AA; Makarov SO; Cunningham CJ; Peshkur TA; Atlas RM; Philp JC
    Environ Sci Process Impacts; 2015 Jul; 17(7):1201-19. PubMed ID: 26089295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the effectiveness of a hydrocarbon liquid solidifier.
    Solomon JJ; Hanley AM; Hanley TR
    Heliyon; 2020 Nov; 6(11):e05465. PubMed ID: 33235937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of Unconventional Oil Contaminated Ecosystems under Natural and Assisted Conditions: A Review.
    Davoodi SM; Miri S; Taheran M; Brar SK; Galvez-Cloutier R; Martel R
    Environ Sci Technol; 2020 Feb; 54(4):2054-2067. PubMed ID: 31904944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational application of chemicals in response to oil spills may reduce environmental damage.
    Tamis JE; Jongbloed RH; Karman CC; Koops W; Murk AJ
    Integr Environ Assess Manag; 2012 Apr; 8(2):231-41. PubMed ID: 21853522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of bio-based materials for oil spill treatment.
    Doshi B; Sillanpää M; Kalliola S
    Water Res; 2018 May; 135():262-277. PubMed ID: 29477791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scale-up considerations for surface collecting agent assisted in-situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations.
    Bullock RJ; Aggarwal S; Perkins RA; Schnabel W
    J Environ Manage; 2017 Apr; 190():266-273. PubMed ID: 28063292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial community response to simulated diluted bitumen spills in coastal seawater and implications for oil spill response.
    Cobanli SE; Wohlgeschaffen G; Ryther C; MacDonald J; Gladwell A; Watts T; Greer CW; Elias M; Wasserscheid J; Robinson B; King TL; Ortmann AC
    FEMS Microbiol Ecol; 2022 May; 98(5):. PubMed ID: 35380637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on sorbent devices for oil-spill control.
    Bhardwaj N; Bhaskarwar AN
    Environ Pollut; 2018 Dec; 243(Pt B):1758-1771. PubMed ID: 30408863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization and reusability of hydroxyethyl cellulose alumina based aerogels for the removal of spilled oil.
    Simón-Herrero C; Romero A; Esteban-Arranz A; de la Osa AR; Sánchez-Silva L
    Chemosphere; 2020 Dec; 260():127568. PubMed ID: 32683011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian Network risk model for assessing oil spill recovery effectiveness in the ice-covered Northern Baltic Sea.
    Lu L; Goerlandt F; Valdez Banda OA; Kujala P; Höglund A; Arneborg L
    Mar Pollut Bull; 2019 Feb; 139():440-458. PubMed ID: 30686447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar-benzohydrazide based phase selective gelators for marine oil spill recovery and removal of dye from polluted water.
    Soundarajan K; Mohan Das T
    Carbohydr Res; 2019 Jul; 481():60-66. PubMed ID: 31252336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A laboratory screening study on the use of solidifiers as a response tool to remove crude oil slicks on seawater.
    Rosales PI; Suidan MT; Venosa AD
    Chemosphere; 2010 Jun; 80(4):389-95. PubMed ID: 20451950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combating oil spill problem using plastic waste.
    Saleem J; Ning C; Barford J; McKay G
    Waste Manag; 2015 Oct; 44():34-8. PubMed ID: 26105077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.