BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29223683)

  • 1. A method to combine target volume data from 3D and 4D planned thoracic radiotherapy patient cohorts for machine learning applications.
    Johnson C; Price G; Khalifa J; Faivre-Finn C; Dekker A; Moore C; van Herk M
    Radiother Oncol; 2018 Feb; 126(2):355-361. PubMed ID: 29223683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated gross tumor volume contour generation for large-scale analysis of early-stage lung cancer patients planned with 4D-CT.
    Davey A; van Herk M; Faivre-Finn C; Brown S; McWilliam A
    Med Phys; 2021 Feb; 48(2):724-732. PubMed ID: 33290579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer.
    Sloth Møller D; Knap MM; Nyeng TB; Khalil AA; Holt MI; Kandi M; Hoffmann L
    Acta Oncol; 2017 Nov; 56(11):1604-1609. PubMed ID: 28885090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based internal gross target volume definition in 4D CT images of lung cancer patients.
    Ma Y; Mao J; Liu X; Dai Z; Zhang H; Zhang X; Li Q
    Med Phys; 2023 Apr; 50(4):2303-2316. PubMed ID: 36398404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view.
    Li G; Cohen P; Xie H; Low D; Li D; Rimner A
    Phys Med Biol; 2012 Nov; 57(22):7579-98. PubMed ID: 23103415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of target volume segmentation accuracy and variability on treatment planning for 4D-CT-based non-small cell lung cancer radiotherapy.
    Martin S; Johnson C; Brophy M; Palma DA; Barron JL; Beauchemin SS; Louie AV; Yu E; Yaremko B; Ahmad B; Rodrigues GB; Gaede S
    Acta Oncol; 2015 Mar; 54(3):322-32. PubMed ID: 25350526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility and potential benefits of defining the internal gross tumor volume of hepatocellular carcinoma using contrast-enhanced 4D CT images obtained by deformable registration.
    Xu H; Gong G; Wei H; Chen L; Chen J; Lu J; Liu T; Zhu J; Yin Y
    Radiat Oncol; 2014 Oct; 9():221. PubMed ID: 25319176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometrical differences in gross target volumes between 3DCT and 4DCT imaging in radiotherapy for non-small-cell lung cancer.
    Li F; Li J; Zhang Y; Xu M; Shang D; Fan T; Liu T; Shao Q
    J Radiat Res; 2013 Sep; 54(5):950-6. PubMed ID: 23564841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of cone beam CT in the adaptive radiotherapy planning process for non-small-cell lung cancer patients.
    Duffton A; Harrow S; Lamb C; McJury M
    Br J Radiol; 2016 Jun; 89(1062):20150492. PubMed ID: 27052681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter-observer variability in target delineation increases during adaptive treatment of head-and-neck and lung cancer.
    Apolle R; Appold S; Bijl HP; Blanchard P; Bussink J; Faivre-Finn C; Khalifa J; Laprie A; Lievens Y; Madani I; Ruffier A; de Ruysscher D; van Elmpt W; Troost EGC
    Acta Oncol; 2019 Oct; 58(10):1378-1385. PubMed ID: 31271079
    [No Abstract]   [Full Text] [Related]  

  • 11. Clinical evaluation of 4D MRI in the delineation of gross and internal tumor volumes in comparison with 4DCT.
    Zhang J; Srivastava S; Wang C; Beckham T; Johnson C; Dutta P; Shepherd A; Mechalakos J; Hunt M; Wu A; Rimner A; Li G
    J Appl Clin Med Phys; 2019 Sep; 20(9):51-60. PubMed ID: 31538719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Definition of gross tumor volume in lung cancer: inter-observer variability.
    Van de Steene J; Linthout N; de Mey J; Vinh-Hung V; Claassens C; Noppen M; Bel A; Storme G
    Radiother Oncol; 2002 Jan; 62(1):37-49. PubMed ID: 11830311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does Motion Assessment With 4-Dimensional Computed Tomographic Imaging for Non-Small Cell Lung Cancer Radiotherapy Improve Target Volume Coverage?
    Ahmed N; Venkataraman S; Johnson K; Sutherland K; Loewen SK
    Clin Med Insights Oncol; 2017; 11():1179554917698461. PubMed ID: 28469512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of an automated 4D-CT contour propagation tool to define an internal gross tumour volume for lung cancer radiotherapy.
    Gaede S; Olsthoorn J; Louie AV; Palma D; Yu E; Yaremko B; Ahmad B; Chen J; Bzdusek K; Rodrigues G
    Radiother Oncol; 2011 Nov; 101(2):322-8. PubMed ID: 21981879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non-small cell lung cancer patients under abdominal compression.
    Han C; Sampath S; Schultheisss TE; Wong JYC
    Med Dosim; 2017 Summer; 42(2):116-121. PubMed ID: 28433482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer.
    Nestle U; Kremp S; Schaefer-Schuler A; Sebastian-Welsch C; Hellwig D; Rübe C; Kirsch CM
    J Nucl Med; 2005 Aug; 46(8):1342-8. PubMed ID: 16085592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography.
    Ezhil M; Vedam S; Balter P; Choi B; Mirkovic D; Starkschall G; Chang JY
    Radiat Oncol; 2009 Jan; 4():4. PubMed ID: 19173738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging.
    Martin S; Brophy M; Palma D; Louie AV; Yu E; Yaremko B; Ahmad B; Barron JL; Beauchemin SS; Rodrigues G; Gaede S
    Phys Med Biol; 2015 Feb; 60(4):1497-518. PubMed ID: 25611494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in tumour volume and motion during radiotherapy for thoracic oesophageal cancer.
    Wang JZ; Li JB; Wang W; Qi HP; Ma ZF; Zhang YJ; Li FX; Fan TY; Shao Q; Xu M
    Radiother Oncol; 2015 Feb; 114(2):201-5. PubMed ID: 25595652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving target delineation on 4-dimensional CT scans in stage I NSCLC using a deformable registration tool.
    van Dam IE; van Sörnsen de Koste JR; Hanna GG; Muirhead R; Slotman BJ; Senan S
    Radiother Oncol; 2010 Jul; 96(1):67-72. PubMed ID: 20570381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.