BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29223758)

  • 1. Biosynthesis and structural characterization of polyhydroxyalkanoates produced by Pseudomonas aeruginosa ATCC 27853 from long odd-chain fatty acids.
    Impallomeni G; Ballistreri A; Carnemolla GM; Rizzo MG; Nicolò MS; Guglielmino SPP
    Int J Biol Macromol; 2018 Mar; 108():608-614. PubMed ID: 29223758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial synthesis of poly(3-hydroxyalkanoates) by Pseudomonas aeruginosa from fatty acids: identification of higher monomer units and structural characterization.
    Barbuzzi T; Giuffrida M; Impallomeni G; Carnazza S; Ferreri A; Guglielmino SP; Ballistreri A
    Biomacromolecules; 2004; 5(6):2469-78. PubMed ID: 15530065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of poly(3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids.
    Impallomeni G; Ballistreri A; Carnemolla GM; Guglielmino SP; Nicolò MS; Cambria MG
    Int J Biol Macromol; 2011 Jan; 48(1):137-45. PubMed ID: 21035502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix-assisted laser desorption/ionization time-of-flight vs. fast-atom bombardment and electrospray ionization mass spectrometry in the structural characterization of bacterial poly(3-hydroxyalkanoates).
    Impallomeni G; Ballistreri A; Carnemolla GM; Franco D; Guglielmino SP
    Rapid Commun Mass Spectrom; 2015 May; 29(9):811-20. PubMed ID: 26377009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis and structural characterization of medium-chain-length poly(3-hydroxyalkanoates) produced by Pseudomonas aeruginosa from fatty acids.
    Ballistreri A; Giuffrida M; Guglielmino SP; Carnazza S; Ferreri A; Impallomeni G
    Int J Biol Macromol; 2001 Aug; 29(2):107-14. PubMed ID: 11518582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and characterization of polyhydroxyalkanoates in Pseudomonas aeruginosa ATCC 9027 from glucose, an unrelated carbon source.
    Rojas-Rosas O; Villafaña-Rojas J; López-Dellamary FA; Nungaray-Arellano J; González-Reynoso O
    Can J Microbiol; 2007 Jul; 53(7):840-51. PubMed ID: 17898839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and characterization of medium-chain-length polyhydroxyalkanoate copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620.
    Sathiyanarayanan G; Bhatia SK; Song HS; Jeon JM; Kim J; Lee YK; Kim YG; Yang YH
    Int J Biol Macromol; 2017 Apr; 97():710-720. PubMed ID: 28108411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of Polyhydroxyalkanoates from Sludge Palm Oil Using
    Kang DK; Lee CR; Lee SH; Bae JH; Park YK; Rhee YH; Sung BH; Sohn JH
    J Microbiol Biotechnol; 2017 May; 27(5):990-994. PubMed ID: 28274100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of medium chain length poly(3-hydroxyalkanoates) (mcl PHAs) from cosmetic co-products by Pseudomonas raguenesii sp. nov., isolated from Tetiaroa, French Polynesia.
    Simon-Colin C; Alain K; Raguénès G; Schmitt S; Kervarec N; Gouin C; Crassous P; Costa B; Guezennec JG
    Bioresour Technol; 2009 Dec; 100(23):6033-9. PubMed ID: 19632827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent.
    Gumel AM; Annuar MS; Heidelberg T
    PLoS One; 2012; 7(9):e45214. PubMed ID: 23028854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swinging effect of salicylic acid on the accumulation of polyhydroxyalkanoic acid (PHA) in Pseudomonas aeruginosa BM114 synthesizing both MCLandSCL-PHA.
    Rho JK; Choi MH; Shim JH; Lee SY; Woo MJ; Ko BS; Chi KW; Yoon SC
    J Microbiol Biotechnol; 2007 Dec; 17(12):2018-26. PubMed ID: 18167450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A
    Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsed feeding strategy is more favorable to medium-chain-length polyhydroxyalkanoates production from waste rapeseed oil.
    Możejko J; Ciesielski S
    Biotechnol Prog; 2014; 30(5):1243-6. PubMed ID: 24729589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis and characterization of copolymer poly(3HB-co-3HV) from saponified Jatropha curcas oil by Pseudomonas oleovorans.
    Allen AD; Anderson WA; Ayorinde FO; Eribo BE
    J Ind Microbiol Biotechnol; 2010 Aug; 37(8):849-56. PubMed ID: 20467780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis and characterization of a new copolymer, poly(3-hydroxyvalerate-co-5-hydroxydecenoate), from Pseudomonas aeruginosa.
    Phukon P; Pokhrel B; Konwar BK; Dolui SK
    Biotechnol Lett; 2013 Apr; 35(4):607-11. PubMed ID: 23264266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis and characterization of polyhydroxyalkanoates in the polysaccharide-degrading marine bacterium Saccharophagus degradans ATCC 43961.
    González-García Y; Nungaray J; Córdova J; González-Reynoso O; Koller M; Atlic A; Braunegg G
    J Ind Microbiol Biotechnol; 2008 Jun; 35(6):629-33. PubMed ID: 18193466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Medium-Chain-Length Polyhydroxyalkanoate-Producing Bacteria in Activated Sludge Samples Enriched by Aerobic Periodic Feeding.
    Lee SH; Kim JH; Chung CW; Kim DY; Rhee YH
    Microb Ecol; 2018 Apr; 75(3):720-728. PubMed ID: 28993853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification, biosynthesis, and characterization of polyhydroxyalkanoate copolymer consisting of 3-hydroxybutyrate and 3-hydroxy-4-methylvalerate.
    Tanadchangsaeng N; Kitagawa A; Yamamoto T; Abe H; Tsuge T
    Biomacromolecules; 2009 Oct; 10(10):2866-74. PubMed ID: 19681605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of β-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups.
    Escapa IF; Morales V; Martino VP; Pollet E; Avérous L; García JL; Prieto MA
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1583-98. PubMed ID: 21267558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.
    Manso Cobos I; Ibáñez García MI; de la Peña Moreno F; Sáez Melero LP; Luque-Almagro VM; Castillo Rodríguez F; Roldán Ruiz MD; Prieto Jiménez MA; Moreno Vivián C
    Microb Cell Fact; 2015 Jun; 14():77. PubMed ID: 26055753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.