BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 29223795)

  • 1. Good distractions: Testing the effects of listening to an audiobook on driving performance in simple and complex road environments.
    Nowosielski RJ; Trick LM; Toxopeus R
    Accid Anal Prev; 2018 Feb; 111():202-209. PubMed ID: 29223795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers.
    Oviedo-Trespalacios O; Haque MM; King M; Washington S
    Accid Anal Prev; 2017 Apr; 101():67-77. PubMed ID: 28189943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of self-regulation in the context of driver distraction: A simulator study.
    Wandtner B; Schumacher M; Schmidt EA
    Traffic Inj Prev; 2016 Jul; 17(5):472-9. PubMed ID: 27082493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effects of Age, Distraction, and Simulated Central Vision Impairment on Hazard Detection in a Driving Simulator.
    Zhang CT; Bowers AR; Savage SW
    Optom Vis Sci; 2020 Apr; 97(4):239-248. PubMed ID: 32304533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural equation model analysis for the evaluation of overall driving performance: A driving simulator study focusing on driver distraction.
    Papantoniou P
    Traffic Inj Prev; 2018 Apr; 19(3):317-325. PubMed ID: 29087738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From partial and high automation to manual driving: Relationship between non-driving related tasks, drowsiness and take-over performance.
    Naujoks F; Höfling S; Purucker C; Zeeb K
    Accid Anal Prev; 2018 Dec; 121():28-42. PubMed ID: 30205284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driving behaviour while self-regulating mobile phone interactions: A human-machine system approach.
    Oviedo-Trespalacios O; Haque MM; King M; Demmel S
    Accid Anal Prev; 2018 Sep; 118():253-262. PubMed ID: 29653674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparative Study of Accident Risk Related to Speech-Based and Handheld Texting during a Sudden Braking Event in Urban Road Environments.
    Fu R; Chen Y; Xu Q; Guo Y; Yuan W
    Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32781529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distraction and task engagement: How interesting and boring information impact driving performance and subjective and physiological responses.
    Horrey WJ; Lesch MF; Garabet A; Simmons L; Maikala R
    Appl Ergon; 2017 Jan; 58():342-348. PubMed ID: 27633231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parametric duration model of the reaction times of drivers distracted by mobile phone conversations.
    Haque MM; Washington S
    Accid Anal Prev; 2014 Jan; 62():42-53. PubMed ID: 24129320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting distracted driving: The role of individual differences in working memory.
    Louie JF; Mouloua M
    Appl Ergon; 2019 Jan; 74():154-161. PubMed ID: 30487094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing feedback to mitigate teen distracted driving: A social norms approach.
    Merrikhpour M; Donmez B
    Accid Anal Prev; 2017 Jul; 104():185-194. PubMed ID: 28544953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asleep at the automated wheel-Sleepiness and fatigue during highly automated driving.
    Vogelpohl T; Kühn M; Hummel T; Vollrath M
    Accid Anal Prev; 2019 May; 126():70-84. PubMed ID: 29571975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG alpha spindles and prolonged brake reaction times during auditory distraction in an on-road driving study.
    Sonnleitner A; Treder MS; Simon M; Willmann S; Ewald A; Buchner A; Schrauf M
    Accid Anal Prev; 2014 Jan; 62():110-8. PubMed ID: 24144496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-regulation of driving speed among distracted drivers: An application of driver behavioral adaptation theory.
    Oviedo-Trespalacios O; Haque MM; King M; Washington S
    Traffic Inj Prev; 2017 Aug; 18(6):599-605. PubMed ID: 28095026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distracting tasks have persisting effects on young and older drivers' braking performance.
    Bock O; Stojan R; Wechsler K; Mack M; Voelcker-Rehage C
    Accid Anal Prev; 2021 Oct; 161():106363. PubMed ID: 34454282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Driver distraction by smartphone use (WhatsApp) in different age groups.
    Ortiz C; Ortiz-Peregrina S; Castro JJ; Casares-López M; Salas C
    Accid Anal Prev; 2018 Aug; 117():239-249. PubMed ID: 29723735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Mate! I'm running 10 min late": An investigation into the self-regulation of mobile phone tasks while driving.
    Oviedo-Trespalacios O; Haque MM; King M; Washington S
    Accid Anal Prev; 2019 Jan; 122():134-142. PubMed ID: 30343165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mild Cognitive Impairment and driving: Does in-vehicle distraction affect driving performance?
    Beratis IN; Pavlou D; Papadimitriou E; Andronas N; Kontaxopoulou D; Fragkiadaki S; Yannis G; Papageorgiou SG
    Accid Anal Prev; 2017 Jun; 103():148-155. PubMed ID: 28441517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of cognitive distraction on perception-response time to unexpected abrupt and gradually onset roadway hazards.
    D'Addario P; Donmez B
    Accid Anal Prev; 2019 Jun; 127():177-185. PubMed ID: 30897523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.