BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 29223801)

  • 1. The external face of Candida albicans: A proteomic view of the cell surface and the extracellular environment.
    Gil-Bona A; Amador-García A; Gil C; Monteoliva L
    J Proteomics; 2018 May; 180():70-79. PubMed ID: 29223801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global Proteomic Profiling of the Secretome of Candida albicans ecm33 Cell Wall Mutant Reveals the Involvement of Ecm33 in Sap2 Secretion.
    Gil-Bona A; Monteoliva L; Gil C
    J Proteome Res; 2015 Oct; 14(10):4270-81. PubMed ID: 26290404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans.
    Gil-Bona A; Llama-Palacios A; Parra CM; Vivanco F; Nombela C; Monteoliva L; Gil C
    J Proteome Res; 2015 Jan; 14(1):142-53. PubMed ID: 25367658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative analysis of protein virulence factors released via extracellular vesicles in two Candida albicans strains cultivated in a nutrient-limited medium.
    Konečná K; Klimentová J; Benada O; Němečková I; Janďourek O; Jílek P; Vejsová M
    Microb Pathog; 2019 Nov; 136():103666. PubMed ID: 31412284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candida albicans Hyphal Extracellular Vesicles Are Different from Yeast Ones, Carrying an Active Proteasome Complex and Showing a Different Role in Host Immune Response.
    Martínez-López R; Hernáez ML; Redondo E; Calvo G; Radau S; Pardo M; Gil C; Monteoliva L
    Microbiol Spectr; 2022 Jun; 10(3):e0069822. PubMed ID: 35604172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Candida albicans regulator of disseminated infection operates primarily as a repressor and governs cell surface remodeling.
    Böhm L; Muralidhara P; Pérez JC
    Mol Microbiol; 2016 Apr; 100(2):328-44. PubMed ID: 26700268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serial Systemic
    Arita GS; Meneguello JE; Sakita KM; Faria DR; Pilau EJ; Ghiraldi-Lopes LD; Campanerut-Sá PAZ; Kioshima ÉS; Bonfim-Mendonça PS; Svidzinski TIE
    Front Cell Infect Microbiol; 2019; 9():230. PubMed ID: 31293987
    [No Abstract]   [Full Text] [Related]  

  • 8. Moonlighting proteins are variably exposed at the cell surfaces of Candida glabrata, Candida parapsilosis and Candida tropicalis under certain growth conditions.
    Karkowska-Kuleta J; Satala D; Bochenska O; Rapala-Kozik M; Kozik A
    BMC Microbiol; 2019 Jul; 19(1):149. PubMed ID: 31269895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic and Cell Wall Proteomic Characterization of a
    El Khoury P; Salameh C; Younes S; Awad A; Said Y; Khalaf RA
    J Microbiol Biotechnol; 2019 Nov; 29(11):1806-1816. PubMed ID: 31546294
    [No Abstract]   [Full Text] [Related]  

  • 10. Beyond the wall: Candida albicans secret(e)s to survive.
    Sorgo AG; Heilmann CJ; Brul S; de Koster CG; Klis FM
    FEMS Microbiol Lett; 2013 Jan; 338(1):10-7. PubMed ID: 23170918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigating candidiasis with acarbose by targeting Candida albicans α-glucosidase: in-silico, in-vitro and transcriptomic approaches.
    David H; Vasudevan S; Solomon AP
    Sci Rep; 2024 May; 14(1):11890. PubMed ID: 38789465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of green fluorescent protein fusions to analyse the N- and C-terminal signal peptides of GPI-anchored cell wall proteins in Candida albicans.
    Mao Y; Zhang Z; Wong B
    Mol Microbiol; 2003 Dec; 50(5):1617-28. PubMed ID: 14651643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Candida albicans VPS4 contributes differentially to epithelial and mucosal pathogenesis.
    Rane HS; Hardison S; Botelho C; Bernardo SM; Wormley F; Lee SA
    Virulence; 2014; 5(8):810-8. PubMed ID: 25483774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The protein secretory pathway of Candida albicans.
    Fonzi WA
    Mycoses; 2009 Jul; 52(4):291-303. PubMed ID: 19207839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Tricalbin-Family Endoplasmic Reticulum-Plasma Membrane Tethering Proteins Attenuate ROS-Involved Caspofungin Sensitivity in Candida albicans.
    Yang L; Zhu H; Li M; Yu Q
    Microbiol Spectr; 2022 Dec; 10(6):e0207922. PubMed ID: 36445092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sur7 promotes plasma membrane organization and is needed for resistance to stressful conditions and to the invasive growth and virulence of Candida albicans.
    Douglas LM; Wang HX; Keppler-Ross S; Dean N; Konopka JB
    mBio; 2012; 3(1):. PubMed ID: 22202230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Candida albicans cell wall proteins.
    Chaffin WL
    Microbiol Mol Biol Rev; 2008 Sep; 72(3):495-544. PubMed ID: 18772287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans.
    Ene IV; Heilmann CJ; Sorgo AG; Walker LA; de Koster CG; Munro CA; Klis FM; Brown AJ
    Proteomics; 2012 Nov; 12(21):3164-79. PubMed ID: 22997008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteinous Components of Neutrophil Extracellular Traps Are Arrested by the Cell Wall Proteins of
    Karkowska-Kuleta J; Smolarz M; Seweryn-Ozog K; Satala D; Zawrotniak M; Wronowska E; Bochenska O; Kozik A; Nobbs AH; Gogol M; Rapala-Kozik M
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass Spectrometry-Based Proteomic and Immunoproteomic Analyses of the
    Vaz C; Pitarch A; Gómez-Molero E; Amador-García A; Weig M; Bader O; Monteoliva L; Gil C
    J Fungi (Basel); 2021 Jun; 7(7):. PubMed ID: 34201883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.