These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29223818)

  • 1. Application of airborne photogrammetry for the visualisation and assessment of contamination migration arising from a Fukushima waste storage facility.
    Connor DT; Martin PG; Smith NT; Payne L; Hutson C; Payton OD; Yamashiki Y; Scott TB
    Environ Pollut; 2018 Mar; 234():610-619. PubMed ID: 29223818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiological comparison of a FDNPP waste storage site during and after construction.
    Connor DT; Martin PG; Pullin H; Hallam KR; Payton OD; Yamashiki Y; Smith NT; Scott TB
    Environ Pollut; 2018 Dec; 243(Pt A):582-590. PubMed ID: 30216890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping radiation distribution on ground based on the measurement using an unmanned aerial vehicle.
    Zhang S; Liu R; Zhao T
    J Environ Radioact; 2018 Oct; 193-194():44-56. PubMed ID: 30189393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low altitude unmanned aerial vehicle for characterising remediation effectiveness following the FDNPP accident.
    Martin PG; Payton OD; Fardoulis JS; Richards DA; Yamashiki Y; Scott TB
    J Environ Radioact; 2016 Jan; 151 Pt 1():58-63. PubMed ID: 26410790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing UAV-based radiation sensor systems for aerial surveys.
    Lee C; Kim HR
    J Environ Radioact; 2019 Aug; 204():76-85. PubMed ID: 30986718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lightweight aerial vehicles for monitoring, assessment and mapping of radiation anomalies.
    MacFarlane JW; Payton OD; Keatley AC; Scott GP; Pullin H; Crane RA; Smilion M; Popescu I; Curlea V; Scott TB
    J Environ Radioact; 2014 Oct; 136():127-30. PubMed ID: 24949582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RADIATION MONITORING SYSTEM USING UNMANNED AERIAL VEHICELS.
    Lüley J; Čerba Š; Vrban B; Osuský F; Sľuka O
    Radiat Prot Dosimetry; 2019 Dec; 186(2-3):337-341. PubMed ID: 31846036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal variation of dose rate distribution around the Fukushima Daiichi nuclear power station using unmanned helicopter.
    Sanada Y; Orita T; Torii T
    Appl Radiat Isot; 2016 Dec; 118():308-316. PubMed ID: 27744213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance Analysis of Geiger-Müller and Cadmium Zinc Telluride Sensors Envisaging Airborne Radiological Monitoring in NORM Sites.
    Borbinha J; Romanets Y; Teles P; Corisco J; Vaz P; Carvalho D; Brouwer Y; Luís R; Pinto L; Vale A; Ventura R; Areias B; Reis AB; Gonçalves B
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution.
    Park S; Lee H; Chon J
    Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of unmanned aerial systems for the mapping of legacy uranium mines.
    Martin PG; Payton OD; Fardoulis JS; Richards DA; Scott TB
    J Environ Radioact; 2015 May; 143():135-140. PubMed ID: 25771221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of ecological half-life of dose rate based on airborne radiation monitoring following the Fukushima Dai-ichi nuclear power plant accident.
    Sanada Y; Urabe Y; Sasaki M; Ochi K; Torii T
    J Environ Radioact; 2018 Dec; 192():417-425. PubMed ID: 30059867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High-Performance Gamma Spectrometer for Unmanned Systems Based on Off-the-Shelf Components.
    Chierici A; Malizia A; Di Giovanni D; Ciolini R; d'Errico F
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiological protection issues arising during and after the Fukushima nuclear reactor accident.
    González AJ; Akashi M; Boice JD; Chino M; Homma T; Ishigure N; Kai M; Kusumi S; Lee JK; Menzel HG; Niwa O; Sakai K; Weiss W; Yamashita S; Yonekura Y
    J Radiol Prot; 2013 Sep; 33(3):497-571. PubMed ID: 23803462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a novel radiation mapping platform for the reduction of operator-induced shielding effects.
    Martin PG; Hutson C; Payne L; Connor D; Payton OD; Yamashiki Y; Scott TB
    J Radiol Prot; 2018 Sep; 38(3):1097-1110. PubMed ID: 30045998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Chernobyl accident as a source of new radiological knowledge: implications for Fukushima rehabilitation and research programmes.
    Balonov M
    J Radiol Prot; 2013 Mar; 33(1):27-40. PubMed ID: 23295495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerial radiation monitoring around the Fukushima Dai-ichi Nuclear Power Plant using an unmanned helicopter.
    Sanada Y; Torii T
    J Environ Radioact; 2015 Jan; 139():294-299. PubMed ID: 25053518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of Hanford's N-reactor liquid waste disposal sites.
    Sitsler RB; DeMers SK
    Health Phys; 2003 Feb; 84(2 Suppl):S41-6. PubMed ID: 12564346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.
    Šálek O; Matolín M; Gryc L
    J Environ Radioact; 2018 Feb; 182():101-107. PubMed ID: 29220714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using drone-mounted cameras for on-site body documentation: 3D mapping and active survey.
    Urbanová P; Jurda M; Vojtíšek T; Krajsa J
    Forensic Sci Int; 2017 Dec; 281():52-62. PubMed ID: 29101908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.