BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29223867)

  • 1. The comprehensive analysis of sorghum cultivated in Poland for energy purposes: Separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods and their impact on bioethanol effectiveness and volatile by-products from the grain and the energy potential of sorghum straw.
    Szambelan K; Nowak J; Frankowski J; Szwengiel A; Jeleń H; Burczyk H
    Bioresour Technol; 2018 Feb; 250():750-757. PubMed ID: 29223867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioethanol production from sorghum grain with Zymomonas mobilis: increasing the yield and quality of raw distillates.
    Szambelan K; Szwengiel A; Nowak J; Frankowski J; Jeleń H
    J Sci Food Agric; 2023 Sep; 103(12):6080-6094. PubMed ID: 37144348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative account of glucose yields and bioethanol production from separate and simultaneous saccharification and fermentation processes at high solids loading with variable PEG concentration.
    Kadhum HJ; Mahapatra DM; Murthy GS
    Bioresour Technol; 2019 Jul; 283():67-75. PubMed ID: 30901590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process alternatives for bioethanol production from mango stem bark residues.
    Carrillo-Nieves D; Ruiz HA; Aguilar CN; Ilyina A; Parra-Saldivar R; Torres JA; Martínez Hernández JL
    Bioresour Technol; 2017 Sep; 239():430-436. PubMed ID: 28538199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae.
    El-Dalatony MM; Kurade MB; Abou-Shanab RAI; Kim H; Salama ES; Jeon BH
    Bioresour Technol; 2016 Nov; 219():98-105. PubMed ID: 27479800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?
    Cannella D; Jørgensen H
    Biotechnol Bioeng; 2014 Jan; 111(1):59-68. PubMed ID: 24022674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of whole crop sorghums as a raw material in consolidated bioprocessing bioethanol production using Flammulina velutipes.
    Mizuno R; Ichinose H; Honda M; Takabatake K; Sotome I; Takai T; Maehara T; Okadome H; Isobe S; Gau M; Kaneko S
    Biosci Biotechnol Biochem; 2009 Jul; 73(7):1671-3. PubMed ID: 19584528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic modeling and analyses of simultaneous saccharification and fermentation process to produce bio-ethanol from rice straw.
    Ko J; Su WJ; Chien IL; Chang DM; Chou SH; Zhan RY
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):195-205. PubMed ID: 19308458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioethanol production from rice husk using different pretreatments and fermentation conditions.
    Madu JO; Agboola BO
    3 Biotech; 2018 Jan; 8(1):15. PubMed ID: 29259890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strategy for synergistic ethanol yield and improved production predictability through blending feedstocks.
    Persson M; Galbe M; Wallberg O
    Biotechnol Biofuels; 2020; 13():156. PubMed ID: 32944072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenyllactic acid production by simultaneous saccharification and fermentation of pretreated sorghum bagasse.
    Kawaguchi H; Teramura H; Uematsu K; Hara KY; Hasunuma T; Hirano K; Sazuka T; Kitano H; Tsuge Y; Kahar P; Niimi-Nakamura S; Oinuma KI; Takaya N; Kasuga S; Ogino C; Kondo A
    Bioresour Technol; 2015 Apr; 182():169-178. PubMed ID: 25689311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5.
    Saha BC; Nichols NN; Qureshi N; Cotta MA
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):865-74. PubMed ID: 21968655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion.
    Fernandes MC; Ferro MD; Paulino AFC; Mendes JAS; Gravitis J; Evtuguin DV; Xavier AMRB
    Bioresour Technol; 2015 Jun; 186():309-315. PubMed ID: 25836040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the production of ethanol between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using unpretreated cassava pulp and enzyme cocktail.
    Zhu M; Li P; Gong X; Wang J
    Biosci Biotechnol Biochem; 2012; 76(4):671-8. PubMed ID: 22484928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioethanol production from wheat straw via enzymatic route employing Penicillium janthinellum cellulases.
    Singhania RR; Saini JK; Saini R; Adsul M; Mathur A; Gupta R; Tuli DK
    Bioresour Technol; 2014 Oct; 169():490-495. PubMed ID: 25086433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings.
    Qiu J; Tian D; Shen F; Hu J; Zeng Y; Yang G; Zhang Y; Deng S; Zhang J
    Bioresour Technol; 2018 Nov; 268():355-362. PubMed ID: 30096643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient approach for bioethanol production from red seaweed Gelidium amansii.
    Kim HM; Wi SG; Jung S; Song Y; Bae HJ
    Bioresour Technol; 2015 Jan; 175():128-34. PubMed ID: 25459813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover.
    Idris ASO; Pandey A; Rao SS; Sukumaran RK
    Bioresour Technol; 2017 Oct; 242():265-271. PubMed ID: 28366693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of bio-hydrogen production yield capacity between asynchronous and simultaneous saccharification and fermentation processes from agricultural residue by mixed anaerobic cultures.
    Li Y; Zhang Z; Zhu S; Zhang H; Zhang Y; Zhang T; Zhang Q
    Bioresour Technol; 2018 Jan; 247():1210-1214. PubMed ID: 28927639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of red microalgae (Porphyridium cruentum) culture conditions for bioethanol production.
    Kim HM; Oh CH; Bae HJ
    Bioresour Technol; 2017 Jun; 233():44-50. PubMed ID: 28258995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.