BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29223874)

  • 1. The hypoxia-tolerant vertebrate brain: Arresting synaptic activity.
    Buck LT; Pamenter ME
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Oct; 224():61-70. PubMed ID: 29223874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental remodelling of GABAergic and glutamatergic neurotransmission: rise of the anoxia-tolerant turtle brain.
    Hogg DW; Hawrysh PJ; Buck LT
    J Therm Biol; 2014 Aug; 44():85-92. PubMed ID: 25086978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen sensitive synaptic neurotransmission in anoxia-tolerant turtle cerebrocortex.
    Buck LT; Hogg DW; Rodgers-Garlick C; Pamenter ME
    Adv Exp Med Biol; 2012; 758():71-9. PubMed ID: 23080145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreases in mitochondrial reactive oxygen species initiate GABA(A) receptor-mediated electrical suppression in anoxia-tolerant turtle neurons.
    Hogg DW; Pamenter ME; Dukoff DJ; Buck LT
    J Physiol; 2015 May; 593(10):2311-26. PubMed ID: 25781154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen-sensitive reduction in Ca²⁺-activated K⁺ channel open probability in turtle cerebrocortex.
    Rodgers-Garlick CI; Hogg DW; Buck LT
    Neuroscience; 2013 May; 237():243-54. PubMed ID: 23384611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of the mitochondrial ATP-sensitive potassium channel occurs independently of PKCε in turtle brain.
    Hawrysh PJ; Miles AR; Buck LT
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Oct; 200():44-53. PubMed ID: 27280321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine as a signal for ion channel arrest in anoxia-tolerant organisms.
    Buck LT
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Nov; 139(3):401-14. PubMed ID: 15544964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrasting strategies for anoxic brain survival--glycolysis up or down.
    Lutz PL; Nilsson GE
    J Exp Biol; 1997 Jan; 200(Pt 2):411-9. PubMed ID: 9050250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review: A history and perspective of mitochondria in the context of anoxia tolerance.
    Hawrysh PJ; Myrka AM; Buck LT
    Comp Biochem Physiol B Biochem Mol Biol; 2022; 260():110733. PubMed ID: 35288242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scavenging ROS dramatically increase NMDA receptor whole-cell currents in painted turtle cortical neurons.
    Dukoff DJ; Hogg DW; Hawrysh PJ; Buck LT
    J Exp Biol; 2014 Sep; 217(Pt 18):3346-55. PubMed ID: 25063855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac survival in anoxia-tolerant vertebrates: An electrophysiological perspective.
    Stecyk JA; Galli GL; Shiels HA; Farrell AP
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):339-54. PubMed ID: 18589002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of anoxia-induced channel arrest in the brain of the goldfish (Carassius auratus).
    Wilkie MP; Pamenter ME; Alkabie S; Carapic D; Shin DS; Buck LT
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):355-62. PubMed ID: 18620076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond anoxia: the physiology of metabolic downregulation and recovery in the anoxia-tolerant turtle.
    Milton SL; Prentice HM
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jun; 147(2):277-90. PubMed ID: 17049896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular adaptations for survival during anoxia: lessons from lower vertebrates.
    Bickler PE; Donohoe PH; Buck LT
    Neuroscientist; 2002 Jun; 8(3):234-42. PubMed ID: 12061503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anoxia tolerant brains.
    Nilsson GE; Lutz PL
    J Cereb Blood Flow Metab; 2004 May; 24(5):475-86. PubMed ID: 15129179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anoxia-mediated calcium release through the mitochondrial permeability transition pore silences NMDA receptor currents in turtle neurons.
    Hawrysh PJ; Buck LT
    J Exp Biol; 2013 Dec; 216(Pt 23):4375-87. PubMed ID: 24259257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Channel arrest: implications from membrane resistance in turtle neurons.
    Doll CJ; Hochachka PW; Reiner PB
    Am J Physiol; 1991 Nov; 261(5 Pt 2):R1321-4. PubMed ID: 1719828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Cerebral ischemia-hypoxia and biophysical mechanisms of neurodegeneration and neuroprotection effects].
    Mahura IS
    Fiziol Zh (1994); 2003; 49(2):7-12. PubMed ID: 12945108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Downregulation of sodium channels during anoxia: a putative survival strategy of turtle brain.
    Pérez-Pinzón MA; Rosenthal M; Sick TJ; Lutz PL; Pablo J; Mash D
    Am J Physiol; 1992 Apr; 262(4 Pt 2):R712-5. PubMed ID: 1314518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of genes involved in excitatory neurotransmission in anoxic crucian carp (Carassius carassius) brain.
    Ellefsen S; Sandvik GK; Larsen HK; Stensløkken KO; Hov DA; Kristensen TA; Nilsson GE
    Physiol Genomics; 2008 Sep; 35(1):5-17. PubMed ID: 18593861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.