These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 29223879)
1. Internalization of a sunflower mannose-binding lectin into phytopathogenic fungal cells induces cytotoxicity. Del Rio M; de la Canal L; Pinedo M; Regente M J Plant Physiol; 2018 Feb; 221():22-31. PubMed ID: 29223879 [TBL] [Abstract][Full Text] [Related]
2. Effects of the binding of a Helianthus annuus lectin to Candida albicans cell wall on biofilm development and adhesion to host cells. Del Rio M; de la Canal L; Pinedo M; Mora-Montes HM; Regente M Phytomedicine; 2019 May; 58():152875. PubMed ID: 30884454 [TBL] [Abstract][Full Text] [Related]
3. A sunflower lectin with antifungal properties and putative medical mycology applications. Regente M; Taveira GB; Pinedo M; Elizalde MM; Ticchi AJ; Diz MS; Carvalho AO; de la Canal L; Gomes VM Curr Microbiol; 2014 Jul; 69(1):88-95. PubMed ID: 24623187 [TBL] [Abstract][Full Text] [Related]
4. The sunflower jacalin Helja: biological and structural insights of its antifungal activity against Candida albicans. Del Río MV; Radicioni MB; Cutine AM; Mariño KV; Mora-Montes HM; Cagnoni AJ; Regente MC Glycobiology; 2024 Jul; 34(9):. PubMed ID: 39088584 [TBL] [Abstract][Full Text] [Related]
5. A novel mannose-binding lectin from Liparis nervosa with anti-fungal and anti-tumor activities. Jiang N; Wang Y; Zhou J; Zheng R; Yuan X; Wu M; Bao J; Wu C Acta Biochim Biophys Sin (Shanghai); 2020 Oct; 52(10):1081-1092. PubMed ID: 32852549 [TBL] [Abstract][Full Text] [Related]
6. Molecular characterization of Helja, an extracellular jacalin-related protein from Helianthus annuus: Insights into the relationship of this protein with unconventionally secreted lectins. Pinedo M; Orts F; Carvalho Ade O; Regente M; Soares JR; Gomes VM; de la Canal L J Plant Physiol; 2015 Jul; 183():144-53. PubMed ID: 26140981 [TBL] [Abstract][Full Text] [Related]
7. Anti-Neuroblastoma Properties of a Recombinant Sunflower Lectin. Pinedo M; Genoula M; Silveyra MX; De Oliveira Carvalho A; Regente M; Del Río M; Ribeiro Soares J; Moreira Gomes V; De La Canal L Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28075401 [TBL] [Abstract][Full Text] [Related]
8. Extracellular sunflower proteins: evidence on non-classical secretion of a jacalin-related lectin. Pinedo M; Regente M; Elizalde M; Quiroga IY; Pagnussat LA; Jorrin-Novo J; Maldonado A; de la Canal L Protein Pept Lett; 2012 Mar; 19(3):270-6. PubMed ID: 21933133 [TBL] [Abstract][Full Text] [Related]
9. Helianthus tuberosus lectin reveals a widespread scaffold for mannose-binding lectins. Bourne Y; Zamboni V; Barre A; Peumans WJ; Van Damme EJ; Rougé P Structure; 1999 Dec; 7(12):1473-82. PubMed ID: 10647178 [TBL] [Abstract][Full Text] [Related]
10. Fungal populations on sunflower (Helianthus annuus) anthosphere and their relation to susceptibility or tolerance to Sclerotinia sclerotiorum attack. Rodríguez MA; Venedikian N; Godeas A Mycopathologia; 2001; 150(3):143-50. PubMed ID: 11469762 [TBL] [Abstract][Full Text] [Related]
11. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. Regente M; Pinedo M; San Clemente H; Balliau T; Jamet E; de la Canal L J Exp Bot; 2017 Nov; 68(20):5485-5495. PubMed ID: 29145622 [TBL] [Abstract][Full Text] [Related]
13. The lectin Orysata induces phosphatase-mediated and carbohydrate-independent aggregation of insect cells. Chen P; De Schutter K; Pauwels J; Gevaert K; Van Damme EJM; Smagghe G J Insect Physiol; 2021; 131():104241. PubMed ID: 33845093 [TBL] [Abstract][Full Text] [Related]
14. Functional alteration of a dimeric insecticidal lectin to a monomeric antifungal protein correlated to its oligomeric status. Banerjee N; Sengupta S; Roy A; Ghosh P; Das K; Das S PLoS One; 2011 Apr; 6(4):e18593. PubMed ID: 21490929 [TBL] [Abstract][Full Text] [Related]
15. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. McLoughlin TJ; Quinn JP; Bettermann A; Bookland R Appl Environ Microbiol; 1992 May; 58(5):1760-3. PubMed ID: 1377900 [TBL] [Abstract][Full Text] [Related]
16. Characterization of an antifungal compound produced by Bacillus sp. strain A(5) F that inhibits Sclerotinia sclerotiorum. Kumar A; Saini S; Wray V; Nimtz M; Prakash A; Johri BN J Basic Microbiol; 2012 Dec; 52(6):670-8. PubMed ID: 22359152 [TBL] [Abstract][Full Text] [Related]
17. Plant Antifungal Lectins: Mechanism of Action and Targets on Human Pathogenic Fungi. Del Rio M; de la Canal L; Regente M Curr Protein Pept Sci; 2020; 21(3):284-294. PubMed ID: 31490746 [TBL] [Abstract][Full Text] [Related]
19. Antifungal Effect of Bauhinia variegata Lectin (BvL) on Bipolaris oryzae. de Oliveira Della Senta D; Cardoso G; Neis A; de Sousa GF; do Amaral DS; de Farias CJ; da Silva Pinto L Curr Microbiol; 2024 Aug; 81(10):329. PubMed ID: 39190055 [TBL] [Abstract][Full Text] [Related]
20. A novel antiproliferative and antifungal lectin from Amaranthus viridis Linn seeds. Kaur N; Dhuna V; Kamboj SS; Agrewala JN; Singh J Protein Pept Lett; 2006; 13(9):897-905. PubMed ID: 17100645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]