These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29224063)

  • 1. An efficient scheme for mental task classification utilizing reflection coefficients obtained from autocorrelation function of EEG signal.
    Rahman MM; Chowdhury MA; Fattah SA
    Brain Inform; 2018 Mar; 5(1):1-12. PubMed ID: 29224063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mental Task Classification Scheme Utilizing Correlation Coefficient Extracted from Interchannel Intrinsic Mode Function.
    Rahman MM; Fattah SA
    Biomed Res Int; 2017; 2017():3720589. PubMed ID: 29376071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design.
    Huan NJ; Palaniappan R
    J Neural Eng; 2004 Sep; 1(3):142-50. PubMed ID: 15876633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving mental task classification by adding high frequency band information.
    Zhang L; He W; He C; Wang P
    J Med Syst; 2010 Feb; 34(1):51-60. PubMed ID: 20192055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of mental tasks using fixed and adaptive autoregressive models of EEG signals.
    Nai-Jen H; Palaniappan R
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2006():507-10. PubMed ID: 17271724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.
    Bascil MS; Tesneli AY; Temurtas F
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):665-76. PubMed ID: 27376723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilizing gamma band to improve mental task based brain-computer interface design.
    Palaniappan R
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):299-303. PubMed ID: 17009489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
    Siuly ; Li Y; Paul Wen P
    Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of EEG Signals Based on Pattern Recognition Approach.
    Amin HU; Mumtaz W; Subhani AR; Saad MNM; Malik AS
    Front Comput Neurosci; 2017; 11():103. PubMed ID: 29209190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals.
    Malan NS; Sharma S
    Comput Biol Med; 2019 Apr; 107():118-126. PubMed ID: 30802693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Biologically Inspired Approach to Frequency Domain Feature Extraction for EEG Classification.
    Gursel Ozmen N; Gumusel L; Yang Y
    Comput Math Methods Med; 2018; 2018():9890132. PubMed ID: 29796060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis.
    Faradji F; Ward RK; Birch GE
    J Neurosci Methods; 2009 Jun; 180(2):330-9. PubMed ID: 19439361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy support vector machine for classification of EEG signals using wavelet-based features.
    Xu Q; Zhou H; Wang Y; Huang J
    Med Eng Phys; 2009 Sep; 31(7):858-65. PubMed ID: 19487151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new brain-computer interface design using fuzzy ARTMAP.
    Palaniappan R; Paramesran R; Nishida S; Saiwaki N
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):140-8. PubMed ID: 12503778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-weight single trial EEG signal processing algorithms: computational profiling for low power design.
    Ahmadi A; Jafari R; Hart J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4426-30. PubMed ID: 22255321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method.
    Taran S; Bajaj V
    Comput Methods Programs Biomed; 2019 May; 173():157-165. PubMed ID: 31046991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface.
    Raza H; Rathee D; Zhou SM; Cecotti H; Prasad G
    Neurocomputing (Amst); 2019 May; 343():154-166. PubMed ID: 32226230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application of high frequency component in classification of different mental tasks].
    Chen X; Yang J; Ye Z; Liang Z; He W; Feng H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1259-63. PubMed ID: 16422115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.