BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29224170)

  • 21. Loss of 5hmC identifies a new type of aberrant DNA hypermethylation in glioma.
    Fernandez AF; Bayón GF; Sierra MI; Urdinguio RG; Toraño EG; García MG; Carella A; López V; Santamarina P; Pérez RF; Belmonte T; Tejedor JR; Cobo I; Menendez P; Mangas C; Ferrero C; Rodrigo L; Astudillo A; Ortea I; Cueto Díaz S; Rodríguez-Gonzalez P; García Alonso JI; Mollejo M; Meléndez B; Domínguez G; Bonilla F; Fraga MF
    Hum Mol Genet; 2018 Sep; 27(17):3046-3059. PubMed ID: 29878202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide characterization of cytosine-specific 5-hydroxymethylation in normal breast tissue.
    Wilkins OM; Johnson KC; Houseman EA; King JE; Marsit CJ; Christensen BC
    Epigenetics; 2020 Apr; 15(4):398-418. PubMed ID: 31842685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells.
    Pastor WA; Pape UJ; Huang Y; Henderson HR; Lister R; Ko M; McLoughlin EM; Brudno Y; Mahapatra S; Kapranov P; Tahiliani M; Daley GQ; Liu XS; Ecker JR; Milos PM; Agarwal S; Rao A
    Nature; 2011 May; 473(7347):394-7. PubMed ID: 21552279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide comparison of DNA hydroxymethylation in mouse embryonic stem cells and neural progenitor cells by a new comparative hMeDIP-seq method.
    Tan L; Xiong L; Xu W; Wu F; Huang N; Xu Y; Kong L; Zheng L; Schwartz L; Shi Y; Shi YG
    Nucleic Acids Res; 2013 Apr; 41(7):e84. PubMed ID: 23408859
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A sensitive approach to map genome-wide 5-hydroxymethylcytosine and 5-formylcytosine at single-base resolution.
    Sun Z; Dai N; Borgaro JG; Quimby A; Sun D; Corrêa IR; Zheng Y; Zhu Z; Guan S
    Mol Cell; 2015 Feb; 57(4):750-761. PubMed ID: 25639471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitation and mapping of the epigenetic marker 5-hydroxymethylcytosine.
    Qing Y; Tian Z; Bi Y; Wang Y; Long J; Song CX; Diao J
    Bioessays; 2017 May; 39(5):. PubMed ID: 28332209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered 5-Hydroxymethylcytosine Landscape in Primary Gastric Adenocarcinoma.
    Liu H; Xu T; Cheng Y; Jin MH; Chang MY; Shu Q; Allen EG; Jin P; Wang X
    DNA Cell Biol; 2019 Dec; 38(12):1460-1469. PubMed ID: 31657619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New guidelines for DNA methylome studies regarding 5-hydroxymethylcytosine for understanding transcriptional regulation.
    Li L; Gao Y; Wu Q; Cheng ASL; Yip KY
    Genome Res; 2019 Apr; 29(4):543-553. PubMed ID: 30782641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tet-Assisted Bisulfite Sequencing (TAB-seq).
    Yu M; Han D; Hon GC; He C
    Methods Mol Biol; 2018; 1708():645-663. PubMed ID: 29224168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of 5-hydroxymethylcytosine in development, aging and age-related diseases.
    López V; Fernández AF; Fraga MF
    Ageing Res Rev; 2017 Aug; 37():28-38. PubMed ID: 28499883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA methylation and hydroxymethylation have distinct genome-wide profiles related to axonal regeneration.
    Madrid A; Borth LE; Hogan KJ; Hariharan N; Papale LA; Alisch RS; Iskandar BJ
    Epigenetics; 2021 Jan; 16(1):64-78. PubMed ID: 32633672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic distribution of 5-Hydroxymethylcytosine in mouse kidney and its relationship with gene expression.
    Wang H; Huang N; Liu Y; Cang J; Xue Z
    Ren Fail; 2016 Jul; 38(6):982-8. PubMed ID: 27097670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting gene expression state and prioritizing putative enhancers using 5hmC signal.
    Gonzalez-Avalos E; Onodera A; Samaniego-Castruita D; Rao A; Ay F
    Genome Biol; 2024 Jun; 25(1):142. PubMed ID: 38825692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RRHP: a tag-based approach for 5-hydroxymethylcytosine mapping at single-site resolution.
    Petterson A; Chung TH; Tan D; Sun X; Jia XY
    Genome Biol; 2014 Sep; 15(9):456. PubMed ID: 25248841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Base-resolution maps of 5-methylcytosine and 5-hydroxymethylcytosine in Dahl S rats: effect of salt and genomic sequence.
    Liu Y; Liu P; Yang C; Cowley AW; Liang M
    Hypertension; 2014 Apr; 63(4):827-38. PubMed ID: 24420542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tet1 and 5-hydroxymethylation: a genome-wide view in mouse embryonic stem cells.
    Wu H; Zhang Y
    Cell Cycle; 2011 Aug; 10(15):2428-36. PubMed ID: 21750410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue-specific 5-hydroxymethylcytosine landscape of the human genome.
    He B; Zhang C; Zhang X; Fan Y; Zeng H; Liu J; Meng H; Bai D; Peng J; Zhang Q; Tao W; Yi C
    Nat Commun; 2021 Jul; 12(1):4249. PubMed ID: 34253716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epigenetic landscape of 5-hydroxymethylcytosine and associations with gene expression in placenta.
    Mortillo M; Kennedy EG; Hermetz KM; Burt AA; Marsit CJ
    Epigenetics; 2024 Dec; 19(1):2326869. PubMed ID: 38507502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 5-Hydroxymethylcytosine: generation, fate, and genomic distribution.
    Shen L; Zhang Y
    Curr Opin Cell Biol; 2013 Jun; 25(3):289-96. PubMed ID: 23498661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Jump-seq: Genome-Wide Capture and Amplification of 5-Hydroxymethylcytosine Sites.
    Hu L; Liu Y; Han S; Yang L; Cui X; Gao Y; Dai Q; Lu X; Kou X; Zhao Y; Sheng W; Gao S; He X; He C
    J Am Chem Soc; 2019 Jun; 141(22):8694-8697. PubMed ID: 31117646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.