These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29224343)

  • 1. The Molecular Mechanism of Nanodroplet Stability.
    Zdrali E; Chen Y; Okur HI; Wilkins DM; Roke S
    ACS Nano; 2017 Dec; 11(12):12111-12120. PubMed ID: 29224343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interfacial structure of nano- and micron-sized oil and water droplets stabilized with SDS and Span80.
    Zdrali E; Etienne G; Smolentsev N; Amstad E; Roke S
    J Chem Phys; 2019 May; 150(20):204704. PubMed ID: 31153210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Salt-Induced Charge Screening on AOT Adsorption to the Planar and Nanoemulsion Oil-Water Interfaces.
    Carpenter AP; Foster MJ; Jones KK; Richmond GL
    Langmuir; 2021 Jul; 37(29):8658-8666. PubMed ID: 34260854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Effects on the Surfactant Adsorption and Interface Charging in Hexadecane/Water Emulsions.
    Glikman D; Braunschweig B
    ACS Nano; 2021 Dec; 15(12):20136-20147. PubMed ID: 34898170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembly at Water Nanodroplet Interfaces Quantified with Nonlinear Light Scattering.
    Smolentsev N; Roke S
    Langmuir; 2020 Aug; 36(31):9317-9322. PubMed ID: 32654491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Duo: Vibrational Sum Frequency Scattering Investigation of pH-Switchable Carboxylic Acid/Carboxylate Surfactants on Nanodroplet Surfaces.
    Foster MJ; Carpenter AP; Richmond GL
    J Phys Chem B; 2021 Aug; 125(33):9629-9640. PubMed ID: 34402616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zwitterionic and Charged Lipids Form Remarkably Different Structures on Nanoscale Oil Droplets in Aqueous Solution.
    Chen Y; Okur HI; Lütgebaucks C; Roke S
    Langmuir; 2018 Jan; 34(3):1042-1050. PubMed ID: 29019694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration mediated interfacial transitions on mixed hydrophobic/hydrophilic nanodroplet interfaces.
    Kovacik F; Okur HI; Smolentsev N; Scheu R; Roke S
    J Chem Phys; 2018 Dec; 149(23):234704. PubMed ID: 30579299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation, characterization and stability of oil nanodroplets on immersed substrates.
    Xu H; Zhang X
    Adv Colloid Interface Sci; 2015 Oct; 224():17-32. PubMed ID: 26233493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulations of surface forces and film rupture in oil/water/surfactant systems.
    Rekvig L; Hafskjold B; Smit B
    Langmuir; 2004 Dec; 20(26):11583-93. PubMed ID: 15595787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Low Can You Go? Molecular Details of Low-Charge Nanoemulsion Surfaces.
    Carpenter AP; Altman RM; Tran E; Richmond GL
    J Phys Chem B; 2020 May; 124(20):4234-4245. PubMed ID: 32378899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of surfactant stabilized oil-in-water emulsions to the addition of particles in an aqueous suspension.
    Katepalli H; Bose A
    Langmuir; 2014 Nov; 30(43):12736-42. PubMed ID: 25312030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of water and surfactant AOT at nanoemulsion surfaces.
    Hensel JK; Carpenter AP; Ciszewski RK; Schabes BK; Kittredge CT; Moore FG; Richmond GL
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13351-13356. PubMed ID: 28760977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The response of carbon black stabilized oil-in-water emulsions to the addition of surfactant solutions.
    Katepalli H; John VT; Bose A
    Langmuir; 2013 Jun; 29(23):6790-7. PubMed ID: 23692631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerberus nanoemulsions produced by multidroplet flow-induced fusion.
    Fryd MM; Mason TG
    Langmuir; 2013 Dec; 29(51):15787-93. PubMed ID: 24328235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of electrosprayed water nanodroplets: internal potential gradients, location of excess charge centers, and "hopping" protons.
    Ahadi E; Konermann L
    J Phys Chem B; 2009 May; 113(20):7071-80. PubMed ID: 19388688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-step droplet formation in monodisperse nanodroplet generation in quenched hydrothermal solution as revealed by spontaneous transformation of nanodroplets to swollen micelles in octane‑in‑water nanoemulsions.
    Nagai Kanasaki Y; Sagawa N; Deguchi S
    J Colloid Interface Sci; 2021 Dec; 604():221-226. PubMed ID: 34265682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfigurable Microfluidic Droplets Stabilized by Nanoparticle Surfactants.
    Toor A; Lamb S; Helms BA; Russell TP
    ACS Nano; 2018 Mar; 12(3):2365-2372. PubMed ID: 29509400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.
    Ziani K; Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2011 Jun; 59(11):6247-55. PubMed ID: 21520914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface charge of electrosprayed water nanodroplets: a molecular dynamics study.
    Ahadi E; Konermann L
    J Am Chem Soc; 2010 Aug; 132(32):11270-7. PubMed ID: 20698694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.