BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29224366)

  • 1. Biotransformation of soy flour isoflavones by Aspergillus niger NRRL 3122 β-glucosidase enzyme.
    Abdella A; El-Baz AF; Ibrahim IA; Mahrous EE; Yang ST
    Nat Prod Res; 2018 Oct; 32(20):2382-2391. PubMed ID: 29224366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response Surface Methodology for Optimization of Genistein Content in Soy Flour and its Effect on the Antioxidant Activity.
    Abdella A; El Baz AF; Mahrous EE; Abd El Maksoud AA; Ibrahim IA; Abdel-Monem AR; Yang ST
    Iran J Pharm Res; 2018; 17(3):1026-1035. PubMed ID: 30127825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolysis of soy isoflavone glycosides by recombinant beta-glucosidase from hyperthermophile Thermotoga maritima.
    Xue Y; Yu J; Song X
    J Ind Microbiol Biotechnol; 2009 Nov; 36(11):1401-8. PubMed ID: 19693552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimisation of soy flour fermentation parameters to produce β-glucosidase for bioconversion into aglycones.
    Handa CL; Couto UR; Vicensoti AH; Georgetti SR; Ida EI
    Food Chem; 2014; 152():56-65. PubMed ID: 24444906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study on isoflavone active aglycone preparation by immobilized beta-glucosidase from Aspergillus niger].
    Pan LH; Luo JP; Jiang ST
    Sheng Wu Gong Cheng Xue Bao; 2007 Nov; 23(6):1060-4. PubMed ID: 18257237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing time and temperature of enzymatic conversion of isoflavone glucosides to aglycones in soy germ flour.
    Tipkanon S; Chompreeda P; Haruthaithanasan V; Suwonsichon T; Prinyawiwatkul W; Xu Z
    J Agric Food Chem; 2010 Nov; 58(21):11340-5. PubMed ID: 20942463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbohydrate-binding module assisted purification and immobilization of β-glucosidase onto cellulose and application in hydrolysis of soybean isoflavone glycosides.
    Chang F; Xue S; Xie X; Fang W; Fang Z; Xiao Y
    J Biosci Bioeng; 2018 Feb; 125(2):185-191. PubMed ID: 29046264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolysis of soybean isoflavonoid glycosides by Dalbergia beta-glucosidases.
    Chuankhayan P; Rimlumduan T; Svasti J; Cairns JR
    J Agric Food Chem; 2007 Mar; 55(6):2407-12. PubMed ID: 17311399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolysis of soybean isoflavones by Debaryomyces hansenii UFV-1 immobilised cells and free β-glucosidase.
    Maitan-Alfenas GP; de A Lage LG; de Almeida MN; Visser EM; de Rezende ST; Guimarães VM
    Food Chem; 2014 Mar; 146():429-36. PubMed ID: 24176363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus.
    Yeom SJ; Kim BN; Kim YS; Oh DK
    J Agric Food Chem; 2012 Feb; 60(6):1535-41. PubMed ID: 22251001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a novel isoflavone glycoside-hydrolyzing β-glucosidase from mangrove soil metagenomic library.
    Mai Z; Wang L; Zeng Q
    Biochem Biophys Res Commun; 2021 Sep; 569():61-65. PubMed ID: 34229124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of Soybean Isoflavones by Using a β-Glucosidase from Alicyclobacillus herbarius.
    Delgado L; Heckmann CM; Di Pisa F; Gourlay L; Paradisi F
    Chembiochem; 2021 Apr; 22(7):1223-1231. PubMed ID: 33237595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones.
    Yan FY; Xia W; Zhang XX; Chen S; Nie XZ; Qian LC
    J Zhejiang Univ Sci B; 2016 Jun; 17(6):455-64. PubMed ID: 27256679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced in vitro and in vivo antioxidant activity and mobilization of free phenolic compounds of soybean flour fermented with different beta-glucosidase-producing fungi.
    Georgetti SR; Vicentini FT; Yokoyama CY; Borin MF; Spadaro AC; Fonseca MJ
    J Appl Microbiol; 2009 Feb; 106(2):459-66. PubMed ID: 19200313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of soy oligosaccharides on plasma and cecal isoflavones, and cecal enzyme activities in mice.
    Tamura M; Hirayama K; Itoh K
    J Nutr Sci Vitaminol (Tokyo); 2003 Jun; 49(3):168-71. PubMed ID: 12953794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improve ethanol tolerance of β-glucosidase Bgl1A by semi-rational engineering for the hydrolysis of soybean isoflavone glycosides.
    Fang W; Yang Y; Zhang X; Yin Q; Zhang X; Wang X; Fang Z; Yazhong X
    J Biotechnol; 2016 Jun; 227():64-71. PubMed ID: 27084057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-glycosidase activity toward different glycosidic forms of isoflavones.
    Ismail B; Hayes K
    J Agric Food Chem; 2005 Jun; 53(12):4918-24. PubMed ID: 15941336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast.
    Rekha CR; Vijayalakshmi G
    J Appl Microbiol; 2010 Oct; 109(4):1198-208. PubMed ID: 20477889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of Aglycone Content in Soy Isoflavones Extract by Free and Immobilized Β-Glucosidase and their Effects in Lipid Accumulation.
    Angelotti JAF; Dias FFG; Sato HH; Fernandes P; Nakajima VM; Macedo J
    Appl Biochem Biotechnol; 2020 Nov; 192(3):734-750. PubMed ID: 32535816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced biotransformation of soybean isoflavone from glycosides to aglycones using solid-state fermentation of soybean with effective microorganisms (EM) strains.
    Zhang H; Yu H
    J Food Biochem; 2019 Apr; 43(4):e12804. PubMed ID: 31353590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.