These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29224717)

  • 21. Visualizing the temporal dynamics of spatial information processing responsible for the Simon effect and its amplification by inhibition of return.
    Hilchey MD; Ivanoff J; Taylor TL; Klein RM
    Acta Psychol (Amst); 2011 Feb; 136(2):235-44. PubMed ID: 20932500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural processes of attentional inhibition of return traced with magnetoencephalography.
    Ayabe T; Ishizu T; Kojima S; Urakawa T; Nishitani N; Kaneoke Y; Kakigi R
    Neuroscience; 2008 Oct; 156(3):769-80. PubMed ID: 18762232
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control mechanisms mediating shifts of attention in auditory and visual space: a spatio-temporal ERP analysis.
    Green JJ; Teder-Sälejärvi WA; McDonald JJ
    Exp Brain Res; 2005 Oct; 166(3-4):358-69. PubMed ID: 16075294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast and slow parietal pathways mediate spatial attention.
    Chambers CD; Payne JM; Stokes MG; Mattingley JB
    Nat Neurosci; 2004 Mar; 7(3):217-8. PubMed ID: 14983182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of return in averaging saccades.
    Watanabe K
    Exp Brain Res; 2001 Jun; 138(3):330-42. PubMed ID: 11460771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gambling against neglect: unconscious spatial biases induced by reward reinforcement in healthy people and brain-damaged patients.
    Lucas N; Schwartz S; Leroy R; Pavin S; Diserens K; Vuilleumier P
    Cortex; 2013; 49(10):2616-27. PubMed ID: 23969194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Object-based inhibition of return in patients with posterior parietal damage.
    Vivas AB; Humphreys GW; Fuentes LJ
    Neuropsychology; 2008 Mar; 22(2):169-76. PubMed ID: 18331159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The spatial distribution of inhibition of return revisited: no difference found between manual and saccadic responses.
    Wang B; Hilchey MD; Cao X; Wang Z
    Neurosci Lett; 2014 Aug; 578():128-32. PubMed ID: 24996195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The neural circuitry underlying the executive control of auditory spatial attention.
    Wu CT; Weissman DH; Roberts KC; Woldorff MG
    Brain Res; 2007 Feb; 1134(1):187-98. PubMed ID: 17204249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of return and oculomotor control in the blind.
    Röder B; Spence C; Rösler F
    Neuroreport; 2000 Sep; 11(13):3043-5. PubMed ID: 11006991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial coding of visual and somatic sensory information in body-centred coordinates.
    Galati G; Committeri G; Sanes JN; Pizzamiglio L
    Eur J Neurosci; 2001 Aug; 14(4):737-46. PubMed ID: 11556898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vertical asymmetries and inhibition of return: effects of spatial and non-spatial cueing on behavior and visual ERPs.
    Gutiérrez-Domínguez FJ; Pazo-Álvarez P; Doallo S; Fuentes LJ; Lorenzo-López L; Amenedo E
    Int J Psychophysiol; 2014 Feb; 91(2):121-31. PubMed ID: 24342058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revisiting the global effect and inhibition of return.
    De Vries JP; Van der Stigchel S; Hooge IT; Verstraten FA
    Exp Brain Res; 2016 Oct; 234(10):2999-3009. PubMed ID: 27377069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling inhibition of return as short-term depression of early sensory input to the superior colliculus.
    Satel J; Wang Z; Trappenberg TP; Klein RM
    Vision Res; 2011 May; 51(9):987-96. PubMed ID: 21354199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inappropriate rightward saccades after right hemisphere damage: Oculomotor analysis and anatomical correlates.
    Bourgeois A; Chica AB; Migliaccio R; Bayle DJ; Duret C; Pradat-Diehl P; Lunven M; Pouget P; Bartolomeo P
    Neuropsychologia; 2015 Jul; 73():1-11. PubMed ID: 25930032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Independent effects of endogenous and exogenous spatial cueing: inhibition of return at endogenously attended target locations.
    Lupiáñez J; Decaix C; Siéroff E; Chokron S; Milliken B; Bartolomeo P
    Exp Brain Res; 2004 Dec; 159(4):447-57. PubMed ID: 15243730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How verbal and spatial manipulation networks contribute to calculation: an fMRI study.
    Zago L; Petit L; Turbelin MR; Andersson F; Vigneau M; Tzourio-Mazoyer N
    Neuropsychologia; 2008; 46(9):2403-14. PubMed ID: 18406434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Between-trial inhibition and facilitation in goal-directed aiming: manual and spatial asymmetries.
    Tremblay L; Welsh TN; Elliott D
    Exp Brain Res; 2005 Jan; 160(1):79-88. PubMed ID: 15316705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network.
    Battelli L; Grossman ED; Plow EB
    Brain Stimul; 2017; 10(2):263-269. PubMed ID: 27838275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.