BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 29224725)

  • 1. RORβ Spinal Interneurons Gate Sensory Transmission during Locomotion to Secure a Fluid Walking Gait.
    Koch SC; Del Barrio MG; Dalet A; Gatto G; Günther T; Zhang J; Seidler B; Saur D; Schüle R; Goulding M
    Neuron; 2017 Dec; 96(6):1419-1431.e5. PubMed ID: 29224725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion.
    Zhang J; Lanuza GM; Britz O; Wang Z; Siembab VC; Zhang Y; Velasquez T; Alvarez FJ; Frank E; Goulding M
    Neuron; 2014 Apr; 82(1):138-50. PubMed ID: 24698273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory modulation of locomotor-like membrane oscillations in Hb9-expressing interneurons.
    Hinckley CA; Wiesner EP; Mentis GZ; Titus DJ; Ziskind-Conhaim L
    J Neurophysiol; 2010 Jun; 103(6):3407-23. PubMed ID: 20393069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexor reflex afferents reset the step cycle during fictive locomotion in the cat.
    Schomburg ED; Petersen N; Barajon I; Hultborn H
    Exp Brain Res; 1998 Oct; 122(3):339-50. PubMed ID: 9808307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically defined inhibitory neurons in the mouse spinal cord dorsal horn: a possible source of rhythmic inhibition of motoneurons during fictive locomotion.
    Wilson JM; Blagovechtchenski E; Brownstone RM
    J Neurosci; 2010 Jan; 30(3):1137-48. PubMed ID: 20089922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback in the brainstem: an excitatory disynaptic pathway for control of whisking.
    Matthews DW; Deschênes M; Furuta T; Moore JD; Wang F; Karten HJ; Kleinfeld D
    J Comp Neurol; 2015 Apr; 523(6):921-42. PubMed ID: 25503925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circuits for grasping: spinal dI3 interneurons mediate cutaneous control of motor behavior.
    Bui TV; Akay T; Loubani O; Hnasko TS; Jessell TM; Brownstone RM
    Neuron; 2013 Apr; 78(1):191-204. PubMed ID: 23583114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rostro-caudal inhibition of hindlimb movements in the spinal cord of mice.
    Caggiano V; Sur M; Bizzi E
    PLoS One; 2014; 9(6):e100865. PubMed ID: 24963653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel facilitatory reflex pathways from the foot and hip to flexors and extensors in the injured human spinal cord.
    Knikou M; Kay E; Schmit BD
    Exp Neurol; 2007 Jul; 206(1):146-58. PubMed ID: 17543951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord.
    Lundfald L; Restrepo CE; Butt SJ; Peng CY; Droho S; Endo T; Zeilhofer HU; Sharma K; Kiehn O
    Eur J Neurosci; 2007 Dec; 26(11):2989-3002. PubMed ID: 18028107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The activity of interneurons during locomotion in the in vitro necturus spinal cord.
    Wheatley M; Jovanović K; Stein RB; Lawson V
    J Neurophysiol; 1994 Jun; 71(6):2025-32. PubMed ID: 7931500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of transmission in muscle group IA afferents during fictive locomotion in the cat.
    Gossard JP
    J Neurophysiol; 1996 Dec; 76(6):4104-12. PubMed ID: 8985904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct evidence for decreased presynaptic inhibition evoked by PBSt group I muscle afferents after chronic SCI and recovery with step-training in rats.
    Caron G; Bilchak JN; Côté MP
    J Physiol; 2020 Oct; 598(20):4621-4642. PubMed ID: 32721039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medullary reticulospinal tract mediating the generalized motor inhibition in cats: parallel inhibitory mechanisms acting on motoneurons and on interneuronal transmission in reflex pathways.
    Takakusaki K; Kohyama J; Matsuyama K; Mori S
    Neuroscience; 2001; 103(2):511-27. PubMed ID: 11246165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic inhibition of spinal sensory feedback ensures smooth movement.
    Fink AJ; Croce KR; Huang ZJ; Abbott LF; Jessell TM; Azim E
    Nature; 2014 May; 509(7498):43-8. PubMed ID: 24784215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crossed reflex responses to flexor nerve stimulation in mice.
    Laflamme OD; Ibrahim M; Akay T
    J Neurophysiol; 2022 Feb; 127(2):493-503. PubMed ID: 34986055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurotransmitter systems of commissural interneurons in the lumbar spinal cord of neonatal rats.
    Wéber I; Veress G; Szucs P; Antal M; Birinyi A
    Brain Res; 2007 Oct; 1178():65-72. PubMed ID: 17920568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking.
    Iglesias C; Nielsen JB; Marchand-Pauvert V
    Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat.
    Enríquez-Denton M; Nielsen J; Perreault MC; Morita H; Petersen N; Hultborn H
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):623-37. PubMed ID: 10922013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory integration in presynaptic inhibitory pathways during fictive locomotion in the cat.
    Ménard A; Leblond H; Gossard JP
    J Neurophysiol; 2002 Jul; 88(1):163-71. PubMed ID: 12091542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.