These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 29224783)

  • 1. In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation.
    Liao HK; Hatanaka F; Araoka T; Reddy P; Wu MZ; Sui Y; Yamauchi T; Sakurai M; O'Keefe DD; Núñez-Delicado E; Guillen P; Campistol JM; Wu CJ; Lu LF; Esteban CR; Izpisua Belmonte JC
    Cell; 2017 Dec; 171(7):1495-1507.e15. PubMed ID: 29224783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creation of a Novel Humanized Dystrophic Mouse Model of Duchenne Muscular Dystrophy and Application of a CRISPR/Cas9 Gene Editing Therapy.
    Young CS; Mokhonova E; Quinonez M; Pyle AD; Spencer MJ
    J Neuromuscul Dis; 2017; 4(2):139-145. PubMed ID: 28505980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD.
    Wang JZ; Wu P; Shi ZM; Xu YL; Liu ZJ
    Brain Dev; 2017 Aug; 39(7):547-556. PubMed ID: 28390761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Modeling of Skeletal Muscle Diseases Using the CRISPR/Cas9 System in Rats.
    Nakamura K; Tanaka T; Yamanouchi K
    Methods Mol Biol; 2023; 2640():277-285. PubMed ID: 36995602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic Applications of CRISPR/Cas for Duchenne Muscular Dystrophy.
    Wong TWY; Cohn RD
    Curr Gene Ther; 2017; 17(4):301-308. PubMed ID: 29173172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Duchenne muscular dystrophy: CRISPR/Cas9 treatment.
    Mendell JR; Rodino-Klapac LR
    Cell Res; 2016 May; 26(5):513-4. PubMed ID: 26926391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9.
    Li HL; Fujimoto N; Sasakawa N; Shirai S; Ohkame T; Sakuma T; Tanaka M; Amano N; Watanabe A; Sakurai H; Yamamoto T; Yamanaka S; Hotta A
    Stem Cell Reports; 2015 Jan; 4(1):143-154. PubMed ID: 25434822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9.
    Chen Y; Zheng Y; Kang Y; Yang W; Niu Y; Guo X; Tu Z; Si C; Wang H; Xing R; Pu X; Yang SH; Li S; Ji W; Li XJ
    Hum Mol Genet; 2015 Jul; 24(13):3764-74. PubMed ID: 25859012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted genome editing in vivo corrects a Dmd duplication restoring wild-type dystrophin expression.
    Maino E; Wojtal D; Evagelou SL; Farheen A; Wong TWY; Lindsay K; Scott O; Rizvi SZ; Hyatt E; Rok M; Visuvanathan S; Chiodo A; Schneeweiss M; Ivakine EA; Cohn RD
    EMBO Mol Med; 2021 May; 13(5):e13228. PubMed ID: 33724658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exon Snipping in Duchenne Muscular Dystrophy.
    Kemaladewi DU; Cohn RD
    Trends Mol Med; 2016 Mar; 22(3):187-189. PubMed ID: 26856237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Editing for Duchenne Muscular Dystrophy Using the CRISPR/Cas9 Technology: The Importance of Fine-tuning the Approach.
    Tremblay JP; Iyombe-Engembe JP; Duchêne B; Ouellet DL
    Mol Ther; 2016 Nov; 24(11):1888-1889. PubMed ID: 27916992
    [No Abstract]   [Full Text] [Related]  

  • 12. Application of CRISPR-Cas system in gene therapy: Pre-clinical progress in animal model.
    Guan L; Han Y; Zhu S; Lin J
    DNA Repair (Amst); 2016 Oct; 46():1-8. PubMed ID: 27519625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromuscular disease: CRISPR/Cas9 gene-editing platform corrects mutations associated with Duchenne muscular dystrophy.
    Wood H
    Nat Rev Neurol; 2015 Apr; 11(4):184. PubMed ID: 25752950
    [No Abstract]   [Full Text] [Related]  

  • 14. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy.
    Ryu SM; Koo T; Kim K; Lim K; Baek G; Kim ST; Kim HS; Kim DE; Lee H; Chung E; Kim JS
    Nat Biotechnol; 2018 Jul; 36(6):536-539. PubMed ID: 29702637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cautious welcome for gene editing of Duchenne muscular dystrophy in animal model.
    Hawkes N
    BMJ; 2016 Jan; 351():h7033. PubMed ID: 26729900
    [No Abstract]   [Full Text] [Related]  

  • 16. A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping.
    Shimo T; Hosoki K; Nakatsuji Y; Yokota T; Obika S
    J Hum Genet; 2018 Mar; 63(3):365-375. PubMed ID: 29339778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective regeneration of dystrophic muscle using autologous iPSC-derived progenitors with CRISPR-Cas9 mediated precise correction.
    Hagan M; Ashraf M; Kim IM; Weintraub NL; Tang Y
    Med Hypotheses; 2018 Jan; 110():97-100. PubMed ID: 29317080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of site-specific mutant mice using the CRISPR/Cas9 system.
    Bai M; Li Q; Shao YJ; Huang YH; Li DL; Ma YL
    Yi Chuan; 2015 Oct; 37(10):1029-35. PubMed ID: 26496755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells.
    Maggio I; Liu J; Janssen JM; Chen X; Gonçalves MA
    Sci Rep; 2016 Nov; 6():37051. PubMed ID: 27845387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An attempt of gene therapy in Duchenne muscular dystrophy: overexpression of utrophin in transgenic mdx mice.
    Gillis JM
    Acta Neurol Belg; 2000 Sep; 100(3):146-50. PubMed ID: 11098286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.