These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29225023)

  • 1. Origins and Specification of the Drosophila Wing.
    Requena D; Álvarez JA; Gabilondo H; Loker R; Mann RS; Estella C
    Curr Biol; 2017 Dec; 27(24):3826-3836.e5. PubMed ID: 29225023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early development of leg and wing primordia in the Drosophila embryo.
    Cohen B; Wimmer EA; Cohen SM
    Mech Dev; 1991 Mar; 33(3):229-40. PubMed ID: 1863558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into insect wing origin provided by functional analysis of vestigial in the red flour beetle, Tribolium castaneum.
    Clark-Hachtel CM; Linz DM; Tomoyasu Y
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16951-6. PubMed ID: 24085843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximodistal subdivision of Drosophila legs and wings: the elbow-no ocelli gene complex.
    Weihe U; Dorfman R; Wernet MF; Cohen SM; Milán M
    Development; 2004 Feb; 131(4):767-74. PubMed ID: 14757638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spalt major controls the development of the notum and of wing hinge primordia of the Drosophila melanogaster wing imaginal disc.
    Grieder NC; Morata G; Affolter M; Gehring WJ
    Dev Biol; 2009 May; 329(2):315-26. PubMed ID: 19298807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origins of the Drosophila leg revealed by the cis-regulatory architecture of the Distalless gene.
    McKay DJ; Estella C; Mann RS
    Development; 2009 Jan; 136(1):61-71. PubMed ID: 19036798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary origin of the insect wing via integration of two developmental modules.
    Niwa N; Akimoto-Kato A; Niimi T; Tojo K; Machida R; Hayashi S
    Evol Dev; 2010; 12(2):168-76. PubMed ID: 20433457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haltere development in D. melanogaster: implications for the evolution of appendage size, shape and function.
    Khan S; Dilsha C; Shashidhara LS
    Int J Dev Biol; 2020; 64(1-2-3):159-165. PubMed ID: 32659004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin and diversification of wings: Insights from a neopteran insect.
    Medved V; Marden JH; Fescemyer HW; Der JP; Liu J; Mahfooz N; Popadić A
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15946-51. PubMed ID: 26668365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene.
    Kim J; Sebring A; Esch JJ; Kraus ME; Vorwerk K; Magee J; Carroll SB
    Nature; 1996 Jul; 382(6587):133-8. PubMed ID: 8700202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in
    Linz DM; Tomoyasu Y
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):E658-E667. PubMed ID: 29317537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. decapentaplegic overexpression affects Drosophila wing and leg imaginal disc development and wingless expression.
    Morimura S; Maves L; Chen Y; Hoffmann FM
    Dev Biol; 1996 Jul; 177(1):136-51. PubMed ID: 8660883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Drosophila wing and haltere development by the nuclear vestigial gene product.
    Williams JA; Bell JB; Carroll SB
    Genes Dev; 1991 Dec; 5(12B):2481-95. PubMed ID: 1752439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single WNT enhancer drives specification and regeneration of the Drosophila wing.
    Gracia-Latorre E; Pérez L; Muzzopappa M; Milán M
    Nat Commun; 2022 Aug; 13(1):4794. PubMed ID: 35995781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell recognition, signal induction, and symmetrical gene activation at the dorsal-ventral boundary of the developing Drosophila wing.
    Kim J; Irvine KD; Carroll SB
    Cell; 1995 Sep; 82(5):795-802. PubMed ID: 7671307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila.
    Koshikawa S; Giorgianni MW; Vaccaro K; Kassner VA; Yoder JH; Werner T; Carroll SB
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7524-9. PubMed ID: 26034272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-redundant selector and growth-promoting functions of two sister genes, buttonhead and Sp1, in Drosophila leg development.
    Estella C; Mann RS
    PLoS Genet; 2010 Jun; 6(6):e1001001. PubMed ID: 20585625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern formation in a secondary field: a hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete subregions.
    Williams JA; Paddock SW; Carroll SB
    Development; 1993 Feb; 117(2):571-84. PubMed ID: 8330528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tergal and pleural wing-related tissues in the German cockroach and their implication to the evolutionary origin of insect wings.
    Clark-Hachtel C; Fernandez-Nicolas A; Belles X; Tomoyasu Y
    Evol Dev; 2021 Mar; 23(2):100-116. PubMed ID: 33503322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The homeobox gene Distal-less induces ventral appendage development in Drosophila.
    Gorfinkiel N; Morata G; Guerrero I
    Genes Dev; 1997 Sep; 11(17):2259-71. PubMed ID: 9303541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.