These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 29225176)
21. Laser-assisted preparation of Pd nanoparticles on carbon cloth for the degradation of environmental pollutants in aqueous medium. Jaleh B; Karami S; Sajjadi M; Feizi Mohazzab B; Azizian S; Nasrollahzadeh M; Varma RS Chemosphere; 2020 May; 246():125755. PubMed ID: 31927368 [TBL] [Abstract][Full Text] [Related]
22. Green Synthesis and Characterization of Palladium Nanoparticles Using Origanum vulgare L. Extract and Their Catalytic Activity. Shaik MR; Ali ZJ; Khan M; Kuniyil M; Assal ME; Alkhathlan HZ; Al-Warthan A; Siddiqui MR; Khan M; Adil SF Molecules; 2017 Jan; 22(1):. PubMed ID: 28106856 [TBL] [Abstract][Full Text] [Related]
23. The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Jia L; Zhang Q; Li Q; Song H Nanotechnology; 2009 Sep; 20(38):385601. PubMed ID: 19713585 [TBL] [Abstract][Full Text] [Related]
24. Production of palladium nanocatalyst supported on modified gum arabic and investigation of its potential against treatment of environmental contaminants. Baran T; Menteş A Int J Biol Macromol; 2020 Oct; 161():1559-1567. PubMed ID: 32791268 [TBL] [Abstract][Full Text] [Related]
25. Carbonized cellulose microspheres loaded with Pd NPs as catalyst in p-nitrophenol reduction and Suzuki-Miyaura coupling reaction. Gao J; Wang Y; Yu Y; Zhu M; Kong W; Liu G; Luo X Int J Biol Macromol; 2024 Jun; 269(Pt 2):131904. PubMed ID: 38688337 [TBL] [Abstract][Full Text] [Related]
29. Facile synthesis of palladium nanocatalyst using gum kondagogu (Cochlospermum gossypium): a natural biopolymer. Rastogi L; Beedu SR; Kora AJ IET Nanobiotechnol; 2015 Dec; 9(6):362-7. PubMed ID: 26647812 [TBL] [Abstract][Full Text] [Related]
30. Photo-catalytic deactivation of hazardous sulfate reducing bacteria using palladium nanoparticles decorated silicon carbide: A comparative study with pure silicon carbide nanoparticles. Baig U; Gondal MA; Dastageer MA; Khalil AB; Zubair SM J Photochem Photobiol B; 2018 Oct; 187():113-119. PubMed ID: 30121421 [TBL] [Abstract][Full Text] [Related]
32. Efficient recovery of palladium nanoparticles from industrial wastewater and their catalytic activity toward reduction of 4-nitrophenol. Lee SJ; Yu Y; Jung HJ; Naik SS; Yeon S; Choi MY Chemosphere; 2021 Jan; 262():128358. PubMed ID: 33182147 [TBL] [Abstract][Full Text] [Related]
33. Efficient Suzuki coupling over novel magnetic nanoparticle: Fe Souri SM; Eidi E; Kassaee MZ Mol Divers; 2023 Jun; 27(3):1469-1479. PubMed ID: 36001224 [TBL] [Abstract][Full Text] [Related]
34. Palladium nanoparticles encapsulated in a metal-organic framework as efficient heterogeneous catalysts for direct C2 arylation of indoles. Huang Y; Lin Z; Cao R Chemistry; 2011 Nov; 17(45):12706-12. PubMed ID: 21956646 [TBL] [Abstract][Full Text] [Related]
35. Fabrication of Pd NPs on pectin-modified Fe Zhang W; Veisi H; Sharifi R; Salamat D; Karmakar B; Hekmati M; Hemmati S; Zangeneh MM; Zhang Z; Su Q Int J Biol Macromol; 2020 Oct; 160():1252-1262. PubMed ID: 32485247 [TBL] [Abstract][Full Text] [Related]