These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29225377)

  • 1. OCT imaging with temporal dispersion induced intense and short coherence laser source.
    Manna SK; le Gall S; Li G
    Opt Commun; 2016 Oct; 376():52-55. PubMed ID: 29225377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect on the longitudinal coherence properties of a pseudothermal light source as a function of source size and temporal coherence.
    Ahmad A; Mahanty T; Dubey V; Butola A; Ahluwalia BS; Mehta DS
    Opt Lett; 2019 Apr; 44(7):1817-1820. PubMed ID: 30933155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Properties of Laser Lines and Fluorescent Spectrum in Cholesteric Liquid Crystal Laser.
    Jeong MY; Chung KS; Wu JW
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7632-9. PubMed ID: 26726387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh-resolution optical coherence tomography at 1.15 mum using photonic crystal fiber with no zero-dispersion wavelengths.
    Wang H; Fleming CP; Rollins AM
    Opt Express; 2007 Mar; 15(6):3085-92. PubMed ID: 19532547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random lasing from cholesteric liquid crystal microspheres dispersed in glycerol.
    Li Y; Luo D; Chen R
    Appl Opt; 2016 Nov; 55(31):8864-8867. PubMed ID: 27828287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array.
    Jeong MY; Chung KS; Wu JW
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8288-95. PubMed ID: 25958516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator.
    Zhou Y; Huang Y; Ge Z; Chen LP; Hong Q; Wu TX; Wu ST
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061705. PubMed ID: 17280082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of dual-band continuum light source for ultrahigh-resolution optical coherence tomography.
    Wang H; Rollins AM
    Appl Opt; 2007 Apr; 46(10):1787-94. PubMed ID: 17356623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circularly polarized unidirectional lasing from a cholesteric liquid crystal layer on a 1-D photonic crystal substrate.
    Park B; Kim M; Kim SW; Kim IT
    Opt Express; 2009 Jul; 17(15):12323-31. PubMed ID: 19654634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography.
    Kang J; Feng P; Wei X; Lam EY; Tsia KK; Wong KKY
    Opt Express; 2018 Feb; 26(4):4370-4381. PubMed ID: 29475287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimode Robust Lasing in a Dye-Doped Polymer Layer Embedded in a Wedge-Shaped Cholesteric.
    Sarukhanyan TM; Gharagulyan H; Rafayelyan MS; Golik SS; Gevorgyan AH; Alaverdyan RB
    Molecules; 2021 Oct; 26(19):. PubMed ID: 34641632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically switchable organo-inorganic hybrid for a white-light laser source.
    Huang JC; Hsiao YC; Lin YT; Lee CR; Lee W
    Sci Rep; 2016 Jun; 6():28363. PubMed ID: 27324219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated-optics-based swept-source optical coherence tomography.
    Nguyen VD; Weiss N; Beeker W; Hoekman M; Leinse A; Heideman RG; van Leeuwen TG; Kalkman J
    Opt Lett; 2012 Dec; 37(23):4820-2. PubMed ID: 23202057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast pulse compression, stretching-and-recompression using cholesteric liquid crystals.
    Liu Y; Wu Y; Chen CW; Zhou J; Lin TH; Khoo IC
    Opt Express; 2016 May; 24(10):10458-65. PubMed ID: 27409869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation.
    Matsuhisa Y; Huang Y; Zhou Y; Wu ST; Takao Y; Fujii A; Ozaki M
    Opt Express; 2007 Jan; 15(2):616-22. PubMed ID: 19532283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between the source size at the diffuser plane and the longitudinal spatial coherence function of the optical coherence microscopy system.
    Usmani K; Ahmad A; Joshi R; Dubey V; Butola A; Mehta DS
    J Opt Soc Am A Opt Image Sci Vis; 2019 Dec; 36(12):D41-D46. PubMed ID: 31873380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution extended source optical coherence tomography.
    Yu X; Liu X; Chen S; Luo Y; Wang X; Liu L
    Opt Express; 2015 Oct; 23(20):26399-413. PubMed ID: 26480153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber-Optic Temperature Sensor Using Cholesteric Liquid Crystals on the Optical Fiber Ferrules.
    Ahn S; Lee GH; Lee JY; Kim Y; Kim MS; Pagidi S; Choi BK; Kim JS; Kim JH; Jeon MY
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Coherence Tomographic Imaging of Human Tissue at 1.55 μm and 1.81 μm Using Er- and Tm-Doped Fiber Sources.
    Bouma BE; Nelson LE; Tearney GJ; Jones DJ; Brezinski ME; Fujimoto JG
    J Biomed Opt; 1998 Jan; 3(1):76-9. PubMed ID: 23015008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interleaved optical coherence tomography.
    Lee HY; Sudkamp H; Marvdashti T; Ellerbee AK
    Opt Express; 2013 Nov; 21(22):26542-56. PubMed ID: 24216876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.