These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29225421)

  • 1. Flow-through microfluidic immunosensors with refractive index-matched silica monoliths as volumetric optical detection elements.
    Wiederoder MS; Kendall EL; Han JH; Ulrich RG; DeVoe DL
    Sens Actuators B Chem; 2018 Jan; 254():878-886. PubMed ID: 29225421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical detection enhancement in porous volumetric microfluidic capture elements using refractive index matching fluids.
    Wiederoder MS; Peterken L; Lu AX; Rahmanian OD; Raghavan SR; DeVoe DL
    Analyst; 2015 Aug; 140(16):5724-31. PubMed ID: 26160546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedimetric Immunosensing in a Porous Volumetric Microfluidic Detector.
    Wiederoder MS; Misri I; DeVoe DL
    Sens Actuators B Chem; 2016 Oct; 234():493-497. PubMed ID: 27721569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ex Situ Integration of Multifunctional Porous Polymer Monoliths into Thermoplastic Microfluidic Chips.
    Kendall EL; Wienhold E; Rahmanian OD; DeVoe DL
    Sens Actuators B Chem; 2014 Oct; 202():866-872. PubMed ID: 25018587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chitosan coated monolith for nucleic acid capture in a thermoplastic microfluidic chip.
    Kendall EL; Wienhold E; DeVoe DL
    Biomicrofluidics; 2014 Jul; 8(4):044109. PubMed ID: 25379094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated colorimetric immunosensing using surface-modified porous monoliths and gold nanoparticles.
    Chuag SH; Chen GH; Chou HH; Shen SW; Chen CF
    Sci Technol Adv Mater; 2013 Aug; 14(4):044403. PubMed ID: 27877588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-through immunosensors using antibody-immobilized polymer monoliths.
    Liu J; Chen CF; Chang CW; DeVoe DL
    Biosens Bioelectron; 2010 Sep; 26(1):182-8. PubMed ID: 20598520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion of gold nanoparticles in porous silica monoliths determined by dynamic light scattering.
    Wu W; Cui J; Sultan U; Gromotka L; Malgaretti P; Damm C; Harting J; Vogel N; Peukert W; Inayat A; Fröba AP
    J Colloid Interface Sci; 2023 Jul; 641():251-264. PubMed ID: 36933471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic beads-based immunosensor for sensitive detection of cancer biomarker proteins using multienzyme-nanoparticle amplification and quantum dots labels.
    Zhang H; Liu L; Fu X; Zhu Z
    Biosens Bioelectron; 2013 Apr; 42():23-30. PubMed ID: 23202325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multienzyme-nanoparticles amplification for sensitive virus genotyping in microfluidic microbeads array using Au nanoparticle probes and quantum dots as labels.
    Zhang H; Liu L; Li CW; Fu H; Chen Y; Yang M
    Biosens Bioelectron; 2011 Nov; 29(1):89-96. PubMed ID: 21872460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive Cytokine Assay Based on Optical Fiber Allowing Localized and Spatially Resolved Detection of Interleukin-6.
    Liu G; Zhang K; Nadort A; Hutchinson MR; Goldys EM
    ACS Sens; 2017 Feb; 2(2):218-226. PubMed ID: 28723139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunodetection of salivary biomarkers by an optical microfluidic biosensor with polyethylenimine-modified polythiophene-C
    Dong T; Pires NMM
    Biosens Bioelectron; 2017 Aug; 94():321-327. PubMed ID: 28319898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D porous polymer monolith-based platform integrated in poly(dimethylsiloxane) microchips for immunoassay.
    Kang QS; Shen XF; Hu NN; Hu MJ; Liao H; Wang HZ; He ZK; Huang WH
    Analyst; 2013 May; 138(9):2613-9. PubMed ID: 23478568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous silica and polymer monolith architectures as solid-state optical chemosensors for Hg
    Madhesan T; Mohan AM
    Anal Bioanal Chem; 2020 Oct; 412(26):7357-7370. PubMed ID: 32813043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amine-Functionalized Nanoporous Silica Monoliths for Heterogeneous Catalysis of the Knoevenagel Condensation in Flow.
    Turke K; Meinusch R; Cop P; Prates da Costa E; Brand RD; Henss A; Schreiner PR; Smarsly BM
    ACS Omega; 2021 Jan; 6(1):425-437. PubMed ID: 33458494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring the surface chemistry of SiO
    Amin MO; Al-Hetlani E
    Talanta; 2019 Aug; 200():458-467. PubMed ID: 31036209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of plasmon length-based surface enhanced Raman scattering for multiplex detection on microfluidic device.
    Nguyen AH; Lee J; Il Choi H; Seok Kwak H; Jun Sim S
    Biosens Bioelectron; 2015 Aug; 70():358-65. PubMed ID: 25841120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A surface-enhanced Raman scattering optrode prepared by in situ photoinduced reactions and its application for highly sensitive on-chip detection.
    Wang S; Liu C; Wang H; Chen G; Cong M; Song W; Jia Q; Xu S; Xu W
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11706-13. PubMed ID: 24978908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid silica monolith for microextraction by packed sorbent to determine drugs from plasma samples by liquid chromatography-tandem mass spectrometry.
    de Souza ID; Domingues DS; Queiroz MEC
    Talanta; 2015 Aug; 140():166-175. PubMed ID: 26048838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and optimization of gold nanoparticle-based silver-enhanced immunoassays.
    Gupta S; Huda S; Kilpatrick PK; Velev OD
    Anal Chem; 2007 May; 79(10):3810-20. PubMed ID: 17429944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.