These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29225727)

  • 21. Cloning and analysis of the genes for polycyclic aromatic hydrocarbon degradation.
    Zylstra GJ; Wang XP; Kim E; Didolkar VA
    Ann N Y Acad Sci; 1994 May; 721():386-98. PubMed ID: 8010687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic biomarkers for monitoring in situ anaerobic hydrocarbon degradation.
    Young LY; Phelps CD
    Environ Health Perspect; 2005 Jan; 113(1):62-7. PubMed ID: 15626649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1.
    Zylstra GJ; Kim E
    J Ind Microbiol Biotechnol; 1997; 19(5-6):408-14. PubMed ID: 26601331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospect, isolation, and characterization of microorganisms for potential use in cases of oil bioremediation along the coast of Trindade Island, Brazil.
    Rodrigues EM; Kalks KH; Tótola MR
    J Environ Manage; 2015 Jun; 156():15-22. PubMed ID: 25791233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil.
    Balachandran C; Duraipandiyan V; Balakrishna K; Ignacimuthu S
    Bioresour Technol; 2012 May; 112():83-90. PubMed ID: 22425516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium.
    Zafra G; Taylor TD; Absalón AE; Cortés-Espinosa DV
    J Hazard Mater; 2016 Nov; 318():702-710. PubMed ID: 27484946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomic Diversity of Two Hydrocarbon-Degrading and Plant Growth-Promoting
    Imperato V; Portillo-Estrada M; McAmmond BM; Douwen Y; Van Hamme JD; Gawronski SW; Vangronsveld J; Thijs S
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31212674
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Liang C; Huang Y; Wang H
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons.
    Laczi K; Kis Á; Horváth B; Maróti G; Hegedüs B; Perei K; Rákhely G
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9745-59. PubMed ID: 26346267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site.
    Butler JE; He Q; Nevin KP; He Z; Zhou J; Lovley DR
    BMC Genomics; 2007 Jun; 8():180. PubMed ID: 17578578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative genomic analysis of pyrene-degrading Mycobacterium species: Genomic islands and ring-hydroxylating dioxygenases involved in pyrene degradation.
    Kim DW; Lee K; Lee DH; Cha CJ
    J Microbiol; 2018 Nov; 56(11):798-804. PubMed ID: 30353465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation.
    Richnow HH; Annweiler E; Michaelis W; Meckenstock RU
    J Contam Hydrol; 2003 Aug; 65(1-2):101-20. PubMed ID: 12855203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1.
    Tao W; Lin J; Wang W; Huang H; Li S
    Ecotoxicol Environ Saf; 2020 Feb; 189():109994. PubMed ID: 31787385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular and biochemical characterization of two meta-cleavage dioxygenases involved in biphenyl and m-xylene degradation by Beijerinckia sp. strain B1.
    Kim E; Zylstra GJ
    J Bacteriol; 1995 Jun; 177(11):3095-103. PubMed ID: 7768806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment.
    Pal S; Kundu A; Banerjee TD; Mohapatra B; Roy A; Manna R; Sar P; Kazy SK
    Genomics; 2017 Oct; 109(5-6):374-382. PubMed ID: 28625866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.
    Fuentes S; Méndez V; Aguila P; Seeger M
    Appl Microbiol Biotechnol; 2014 Jun; 98(11):4781-94. PubMed ID: 24691868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential of dissimilatory nitrate reduction pathways in polycyclic aromatic hydrocarbon degradation.
    Ribeiro H; de Sousa T; Santos JP; Sousa AGG; Teixeira C; Monteiro MR; Salgado P; Mucha AP; Almeida CMR; Torgo L; Magalhães C
    Chemosphere; 2018 May; 199():54-67. PubMed ID: 29428516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1.
    Rabus R
    Appl Microbiol Biotechnol; 2005 Sep; 68(5):580-7. PubMed ID: 16041578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic insights of aromatic hydrocarbon degrading
    Rajkumari J; Paikhomba Singha L; Pandey P
    3 Biotech; 2018 Feb; 8(2):118. PubMed ID: 29430379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic Organization and Expression of Iron Metabolism Genes in the Emerging Pathogenic Mold
    Le Govic Y; Papon N; Le Gal S; Lelièvre B; Bouchara JP; Vandeputte P
    Front Microbiol; 2018; 9():827. PubMed ID: 29755443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.