These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 2922640)

  • 1. Spinal stability and intersegmental muscle forces. A biomechanical model.
    Panjabi M; Abumi K; Duranceau J; Oxland T
    Spine (Phila Pa 1976); 1989 Feb; 14(2):194-200. PubMed ID: 2922640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Biomechanical stability of unilateral pedicle screw fixation on cadaveric model simulated two-level posterior lumbar interbody fusion].
    Dong JW; Feng F; Zhao WD; Rong LM; Liu XM
    Zhonghua Wai Ke Za Zhi; 2011 May; 49(5):436-9. PubMed ID: 21733402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study.
    Niosi CA; Zhu QA; Wilson DC; Keynan O; Wilson DR; Oxland TR
    Eur Spine J; 2006 Jun; 15(6):913-22. PubMed ID: 16217663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine. A canine model study.
    Takeuchi T; Abumi K; Shono Y; Oda I; Kaneda K
    Spine (Phila Pa 1976); 1999 Jul; 24(14):1414-20. PubMed ID: 10423785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics.
    Cunningham BW; Hu N; Zorn CM; McAfee PC
    Spine J; 2010 Apr; 10(4):341-9. PubMed ID: 20362252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically simulated muscle forces strongly stabilize intact and injured upper cervical spine specimens.
    Kettler A; Hartwig E; Schultheiss M; Claes L; Wilke HJ
    J Biomech; 2002 Mar; 35(3):339-46. PubMed ID: 11858809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments.
    Busscher I; van Dieën JH; Kingma I; van der Veen AJ; Verkerke GJ; Veldhuizen AG
    Spine (Phila Pa 1976); 2009 Dec; 34(26):2858-64. PubMed ID: 20010393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cervical spine instability following axial compression injury: a biomechanical study.
    Ivancic PC
    Orthop Traumatol Surg Res; 2014 Feb; 100(1):127-33. PubMed ID: 24434364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of the intersegmental trunk muscles for the stability of the lumbar spine. A biomechanical study in vitro.
    Quint U; Wilke HJ; Shirazi-Adl A; Parnianpour M; Löer F; Claes LE
    Spine (Phila Pa 1976); 1998 Sep; 23(18):1937-45. PubMed ID: 9779525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine.
    Gonzalez-Blohm SA; Doulgeris JJ; Aghayev K; Lee WE; Volkov A; Vrionis FD
    J Neurosurg Spine; 2014 Feb; 20(2):209-19. PubMed ID: 24286528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled motion with the XL-TDR lateral-approach lumbar total disk replacement: in vitro kinematic investigation.
    Pimenta L; Turner A; Oliveira L; Marchi L; Cornwall B
    J Neurol Surg A Cent Eur Neurosurg; 2015 Mar; 76(2):133-8. PubMed ID: 25545808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental instability in the lumbar spine.
    Kaigle AM; Holm SH; Hansson TH
    Spine (Phila Pa 1976); 1995 Feb; 20(4):421-30. PubMed ID: 7747225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical evaluation of a new total posterior-element replacement system.
    Wilke HJ; Schmidt H; Werner K; Schmölz W; Drumm J
    Spine (Phila Pa 1976); 2006 Nov; 31(24):2790-6; discussion 2797. PubMed ID: 17108830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical stability of five stand-alone anterior lumbar interbody fusion constructs.
    Tsantrizos A; Andreou A; Aebi M; Steffen T
    Eur Spine J; 2000 Feb; 9(1):14-22. PubMed ID: 10766072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study.
    Wilke HJ; Wolf S; Claes LE; Arand M; Wiesend A
    Spine (Phila Pa 1976); 1995 Jan; 20(2):192-8. PubMed ID: 7716624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graded thoracolumbar spinal injuries: development of multidirectional instability.
    Panjabi MM; Kifune M; Liu W; Arand M; Vasavada A; Oxland TR
    Eur Spine J; 1998; 7(4):332-9. PubMed ID: 9765043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage.
    Perry TG; Mageswaran P; Colbrunn RW; Bonner TF; Francis T; McLain RF
    J Neurosurg Spine; 2014 Sep; 21(3):481-8. PubMed ID: 24949903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis.
    Rohlmann A; Burra NK; Zander T; Bergmann G
    Eur Spine J; 2007 Aug; 16(8):1223-31. PubMed ID: 17206401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of follower load on the intersegmental coupled motion characteristics of the human thoracic spine: An in vitro study using entire rib cage specimens.
    Liebsch C; Graf N; Wilke HJ
    J Biomech; 2018 Sep; 78():36-44. PubMed ID: 30031651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biomechanical assessment of soft-tissue damage in the cervical spine following a unilateral facet injury.
    Nadeau M; McLachlin SD; Bailey SI; Gurr KR; Dunning CE; Bailey CS
    J Bone Joint Surg Am; 2012 Nov; 94(21):e156. PubMed ID: 23138243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.