These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 29226554)

  • 1. Controllable Solid Electrolyte Interphase in Nickel-Rich Cathodes by an Electrochemical Rearrangement for Stable Lithium-Ion Batteries.
    Kim J; Lee J; Ma H; Jeong HY; Cha H; Lee H; Yoo Y; Park M; Cho J
    Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29226554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Magnetite Coating for Stable High-Voltage Cycling of Nickel-Rich Cathodes in Conventional Liquid and All-Solid-State Lithium-Ion Batteries.
    Mahajani V; Bhimani K; Lakhnot AS; Panchal R; Anjan A; Manoj RM; Koratkar N
    Small; 2024 Apr; ():e2402126. PubMed ID: 38573960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Realization of Multilayer Interphases on a Ni-Rich NCM Cathode and a SiO
    Kim HN; Kim SY; Ahn J; Yim T
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14940-14953. PubMed ID: 38489840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrolyte-Enabled High-Voltage Operation of a Low-Nickel, Low-Cobalt Layered Oxide Cathode for High Energy Density Lithium-Ion Batteries.
    Yi M; Sim R; Manthiram A
    Small; 2024 Jun; ():e2403429. PubMed ID: 38847570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cathode Electrolyte Interphase Engineering for Prussian Blue Analogues in Lithium-Ion Batteries.
    Wi TU; Park C; Ko S; Kim T; Choi A; Muralidharan V; Choi M; Lee HW
    Nano Lett; 2024 Jun; 24(25):7783-7791. PubMed ID: 38869099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly-Solvating Electrolyte Enables Mechanically Stable and Inorganic-Rich Cathode Electrolyte Interphase for High-Performing Potassium-Ion Batteries.
    Zhao S; Li G; Zhang B; Zhang S; Liu Y; Zhou J; Luo M; Guo S
    Adv Mater; 2024 May; ():e2405184. PubMed ID: 38777567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphiphilic Polymer Electrolyte Blocking Lattice Oxygen Evolution from High-Voltage Nickel-rich Cathodes for Ultra-Thermal Stabile Batteries.
    Chen J; Lin Y; Li Q; Ren H; Zhang L; Sun Y; Zhang S; Shang X; Zhou W; Wu M; Li Z
    Angew Chem Int Ed Engl; 2024 Jun; ():e202407024. PubMed ID: 38864254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Layer Construction via Cosolvent Enables Stable Ni-Rich Cathodes for Enhanced Lithium Storage.
    Pan X; Liu T; Hou Q
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14922-14928. PubMed ID: 38470147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium-Ion Conductive Coatings for Nickel-Rich Cathodes for Lithium-Ion Batteries.
    Shao Y; Xu J; Amardeep A; Xia Y; Meng X; Liu J; Liao S
    Small Methods; 2024 May; ():e2400256. PubMed ID: 38708816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial solid electrolyte interphase for aqueous lithium energy storage systems.
    Zhi J; Yazdi AZ; Valappil G; Haime J; Chen P
    Sci Adv; 2017 Sep; 3(9):e1701010. PubMed ID: 28913426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable interphase inducer based on montmorillonite clay mineral to enhance stability and fire safety for lithium metal batteries.
    Kim T
    J Colloid Interface Sci; 2024 Oct; 671():631-642. PubMed ID: 38820847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Pomegranate-Like CuF2 Cathode Derived from Spent Lithium-Ion Batteries.
    Zhou X; Xiao S; Yang D; Li Y; Yao R; Lang X; Tan H; Li Y; Jiang Q
    Angew Chem Int Ed Engl; 2024 Jul; ():e202409255. PubMed ID: 38984684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-entropy doping promising ultrahigh-Ni Co-free single-crystalline cathode toward commercializable high-energy lithium-ion batteries.
    Liang L; Su M; Sun Z; Wang L; Hou L; Liu H; Zhang Q; Yuan C
    Sci Adv; 2024 Jun; 10(25):eado4472. PubMed ID: 38905349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building High-Rate Nickel-Rich Cathodes by Self-Organization of Structurally Stable Macrovoid.
    Kalluri S; Cha H; Kim J; Lee H; Jang H; Cho J
    Adv Sci (Weinh); 2020 Apr; 7(7):1902844. PubMed ID: 32274299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air-Stable Na
    Cao M; Xu L; Guo Y; Li Y; Fang Q; Liu Y; Bai R; Zhu J; Gao Y; Cheng T; Li J; Wang X; Guo Y; Wang Z; Chen L
    Small; 2024 Jun; ():e2400498. PubMed ID: 38863125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Carbonyl and Azo-Based Polymer Cathode for Low-Temperature Na-Ion Batteries.
    Kim EY; Mohammadiroudbari M; Chen F; Yang Z; Luo C
    ACS Nano; 2024 Feb; 18(5):4159-4169. PubMed ID: 38264981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-Electrolyte Interphase During Battery Cycling: Theory of Growth Regimes.
    von Kolzenberg L; Latz A; Horstmann B
    ChemSusChem; 2020 Aug; 13(15):3901-3910. PubMed ID: 32421232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorinated Surface Engineering Towards High-Rate and Durable Potassium-Ion Battery.
    Zhang X; Wu F; Fang D; Chen R; Li L
    Angew Chem Int Ed Engl; 2024 Jul; 63(28):e202404332. PubMed ID: 38700477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen Transport through Amorphous Cathode Coatings in Solid-State Batteries.
    Cheng J; Peng X; Zhang YQ; Tian Y; Ogunfunmi T; Haddad AZ; Dopilka A; Ceder G; Persson KA; Scott MC
    Chem Mater; 2024 Mar; 36(6):2642-2651. PubMed ID: 38558919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructures of layered Ni-rich cathodes for lithium-ion batteries.
    Lu J; Xu C; Dose W; Dey S; Wang X; Wu Y; Li D; Ci L
    Chem Soc Rev; 2024 May; 53(9):4707-4740. PubMed ID: 38536022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.