These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29226605)

  • 1. Selective Coassembly of Aromatic Amino Acids to Fabricate Hydrogels with Light Irradiation-Induced Emission for Fluorescent Imprint.
    Xing P; Chen H; Xiang H; Zhao Y
    Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29226605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent Imprintable Hydrogels via Organic/Inorganic Supramolecular Coassembly.
    Cheng Q; Cao Z; Hao A; Zhao Y; Xing P
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15491-15499. PubMed ID: 32156108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids.
    Xing P; Li P; Chen H; Hao A; Zhao Y
    ACS Nano; 2017 Apr; 11(4):4206-4216. PubMed ID: 28368572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transpositional Circularly Polarized Luminescence from Transient Charge-Transfer Coassembly.
    Wang Z; Hao A; Xing P
    Small; 2021 Nov; 17(44):e2104499. PubMed ID: 34608747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable Multicomponent Self-Assembly Based on Aromatic Amino Acids.
    Xing P; Phua SZF; Wei X; Zhao Y
    Adv Mater; 2018 Dec; 30(49):e1805175. PubMed ID: 30302837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular Molecular Self-Assembly for Diversified Chiroptical Systems.
    Wang Z; Zhang H; Hao A; Zhao Y; Xing P
    Small; 2020 Jul; 16(30):e2002036. PubMed ID: 32578382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Supramolecular Chirality in Multicomponent Self-Assembled Systems.
    Xing P; Zhao Y
    Acc Chem Res; 2018 Sep; 51(9):2324-2334. PubMed ID: 30179457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the coassembly of hydrogelators and surfactants based on aromatic peptide amphiphiles.
    Fleming S; Debnath S; Frederix PW; Hunt NT; Ulijn RV
    Biomacromolecules; 2014 Apr; 15(4):1171-84. PubMed ID: 24568678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular hydrogels based on short peptides linked with conformational switch.
    Huang Y; Qiu Z; Xu Y; Shi J; Lin H; Zhang Y
    Org Biomol Chem; 2011 Apr; 9(7):2149-55. PubMed ID: 21298187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coassembly-Induced Transformation of Dipeptide Amyloid-Like Structures into Stimuli-Responsive Supramolecular Materials.
    Ji W; Yuan C; Chakraborty P; Makam P; Bera S; Rencus-Lazar S; Li J; Yan X; Gazit E
    ACS Nano; 2020 Jun; 14(6):7181-7190. PubMed ID: 32427482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environment-Adaptive Coassembly/Self-Sorting and Stimulus-Responsiveness Transfer Based on Cholesterol Building Blocks.
    Xing P; Tham HP; Li P; Chen H; Xiang H; Zhao Y
    Adv Sci (Weinh); 2018 Jan; 5(1):1700552. PubMed ID: 29375976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels.
    Xu XD; Chen CS; Lu B; Cheng SX; Zhang XZ; Zhuo RX
    J Phys Chem B; 2010 Feb; 114(7):2365-72. PubMed ID: 20166681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse Evolution of Helicity from the Molecular to the Macroscopic Level Based on
    Liang J; Hao A; Xing P; Zhao Y
    ACS Nano; 2021 Mar; 15(3):5322-5332. PubMed ID: 33683099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triggering Supramolecular Hydrogelation Using a Protein-Peptide Coassembly Approach.
    Jain R; Pal VK; Roy S
    Biomacromolecules; 2020 Oct; 21(10):4180-4193. PubMed ID: 32786522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives.
    Liyanage W; Nilsson BL
    Langmuir; 2016 Jan; 32(3):787-99. PubMed ID: 26717444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoswitchable Fluorescent Crystals Obtained by the Photoreversible Coassembly of a Nucleobase and an Azobenzene Intercalator.
    Zhou L; Retailleau P; Morel M; Rudiuk S; Baigl D
    J Am Chem Soc; 2019 Jun; 141(23):9321-9329. PubMed ID: 31117648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogels Self-Assembled from an Azobenzene Building Block: Stability toward UV Irradiation in the Gel and Thin-Film States.
    Cheng Q; Zhang Y; Luan T; Wang Z; Tang R; Xing P; Hao A
    Chempluschem; 2019 Apr; 84(4):328-332. PubMed ID: 31939216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amide-triazole isosteric substitution for tuning self-assembly and incorporating new functions into soft supramolecular materials.
    Bachl J; Mayr J; Sayago FJ; Cativiela C; Díaz Díaz D
    Chem Commun (Camb); 2015 Mar; 51(25):5294-7. PubMed ID: 25502929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genesis of Neurotoxic Hybrid Nanofibers from the Coassembly of Aromatic Amino Acids.
    Anand BG; Prajapati KP; Ansari M; Yadav DK; Temgire M; Kar K
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):36722-36736. PubMed ID: 34327979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementary π-π interactions induce multicomponent coassembly into functional fibrils.
    Ryan DM; Doran TM; Nilsson BL
    Langmuir; 2011 Sep; 27(17):11145-56. PubMed ID: 21815693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.