BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29226612)

  • 1. Glutaraldehyde cross-linking increases the stability of Lumbricus terrestris erythrocruorin.
    Rajesh A; Zimmerman D; Spivack K; Abdulmalik O; Elmer J
    Biotechnol Prog; 2018 Mar; 34(2):521-528. PubMed ID: 29226612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonging the shelf life of Lumbricus terrestris erythrocruorin for use as a novel blood substitute.
    Muzzelo C; Neely C; Shah P; Abdulmalik O; Elmer J
    Artif Cells Nanomed Biotechnol; 2018 Feb; 46(1):39-46. PubMed ID: 28278582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing the stability of Lumbricus terrestris erythrocruorin via poly(acrylic acid) conjugation.
    Spivack K; Tucker M; Zimmerman D; Nicholas M; Abdulmalik O; Comolli N; Elmer J
    Artif Cells Nanomed Biotechnol; 2018; 46(sup2):1137-1144. PubMed ID: 29916733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification of Lumbricus terrestris erythrocruorin (LtEc) with anion exchange chromatography.
    Timm B; Abdulmalik O; Chakrabarti A; Elmer J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Aug; 1150():122162. PubMed ID: 32505113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic Synthesis of a Polydopamine-Coated Acellular Mega-Hemoglobin as a Potential Oxygen Therapeutic with Antioxidant Properties.
    Pozy E; Savla C; Palmer AF
    Biomacromolecules; 2023 May; 24(5):2022-2029. PubMed ID: 37027799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification of diverse hemoglobins by metal salt precipitation.
    Zimmerman D; Dienes J; Abdulmalik O; Elmer JJ
    Protein Expr Purif; 2016 Sep; 125():74-82. PubMed ID: 26363116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyethylene Glycol Camouflaged Earthworm Hemoglobin.
    Jani VP; Jelvani A; Moges S; Nacharaju P; Roche C; Dantsker D; Palmer A; Friedman JM; Cabrales P
    PLoS One; 2017; 12(1):e0170041. PubMed ID: 28099525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypervolemic infusion of Lumbricus terrestris erythrocruorin purified by tangential-flow filtration.
    Elmer J; Zorc K; Rameez S; Zhou Y; Cabrales P; Palmer AF
    Transfusion; 2012 Aug; 52(8):1729-40. PubMed ID: 22304397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequencing of the Lumbricus terrestris genome reveals degeneracy in its erythrocruorin genes.
    Dowd S; Lagalante L; Rahlfs J; Sharo C; Opulente D; Lagalante A; Elmer J
    Biochimie; 2024 Apr; 219():130-141. PubMed ID: 37981225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen delivery during extreme anemia with ultra-pure earthworm hemoglobin.
    Elmer J; Palmer AF; Cabrales P
    Life Sci; 2012 Oct; 91(17-18):852-9. PubMed ID: 22982347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Cl- and H+ on the oxygen binding properties of glutaraldehyde-polymerized bovine hemoglobin-based blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(5):1543-9. PubMed ID: 15458341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct comparison of oligochaete erythrocruorins as potential blood substitutes.
    Zimmerman D; DiIusto M; Dienes J; Abdulmalik O; Elmer JJ
    Bioeng Transl Med; 2017 Jun; 2(2):212-221. PubMed ID: 29313031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the capacity to generate and preserve nitric oxide bioactivity in highly purified earthworm erythrocruorin: a giant polymeric hemoglobin with potential blood substitute properties.
    Roche CJ; Talwar A; Palmer AF; Cabrales P; Gerfen G; Friedman JM
    J Biol Chem; 2015 Jan; 290(1):99-117. PubMed ID: 25371199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of NaBH4 concentration and reaction time on physical properties of glutaraldehyde-polymerized hemoglobin.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):946-52. PubMed ID: 15176903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical properties and oxygen affinity of glutaraldehyde polymerized crocodile hemoglobin: the new alternative hemoglobin source for hemoglobin-based oxygen carriers.
    Roamcharern N; Payoungkiattikun W; Anwised P; Mahong B; Jangpromma N; Daduang S; Klaynongsruang S
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):852-861. PubMed ID: 30873884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acellular invertebrate hemoglobins as model therapeutic oxygen carriers: unique redox potentials.
    Harrington JP; Kobayashi S; Dorman SC; Zito SL; Hirsch RE
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(1):53-67. PubMed ID: 17364471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemoglobin-albumin cross-linking with disuccinimidyl suberate (DSS) and/or glutaraldehyde for blood substitutes.
    Scurtu F; Zolog O; Iacob B; Silaghi-Dumitrescu R
    Artif Cells Nanomed Biotechnol; 2014 Feb; 42(1):13-7. PubMed ID: 23342991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical Properties of Lumbricus terrestris Erythrocruorin and Its Potential Use as a Red Blood Cell Substitute.
    Elmer J; Palmer AF
    J Funct Biomater; 2012 Jan; 3(1):49-60. PubMed ID: 24956515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of glutaraldehyde concentration on the physical properties of polymerized hemoglobin-based oxygen carriers.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(4):1225-32. PubMed ID: 15296452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A natural compound (reuterin) produced by Lactobacillus reuteri for hemoglobin polymerization as a blood substitute.
    Chen YC; Chang WH; Chang Y; Huang CM; Sung HW
    Biotechnol Bioeng; 2004 Jul; 87(1):34-42. PubMed ID: 15211486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.