These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 29226669)
1. Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes. Kim TG; Park HJ; Woo K; Jeong S; Choi Y; Lee SY ACS Appl Mater Interfaces; 2018 Jan; 10(1):1059-1066. PubMed ID: 29226669 [TBL] [Abstract][Full Text] [Related]
2. Enhanced oxidation-resistant Cu-Ni core-shell nanowires: controllable one-pot synthesis and solution processing to transparent flexible heaters. Chen J; Chen J; Li Y; Zhou W; Feng X; Huang Q; Zheng JG; Liu R; Ma Y; Huang W Nanoscale; 2015 Oct; 7(40):16874-9. PubMed ID: 26411899 [TBL] [Abstract][Full Text] [Related]
3. Printable and Flexible Copper-Silver Alloy Electrodes with High Conductivity and Ultrahigh Oxidation Resistance. Li W; Hu D; Li L; Li CF; Jiu J; Chen C; Ishina T; Sugahara T; Suganuma K ACS Appl Mater Interfaces; 2017 Jul; 9(29):24711-24721. PubMed ID: 28675295 [TBL] [Abstract][Full Text] [Related]
4. Cu@Ni core-shell nanoparticles prepared via an injection approach with enhanced oxidation resistance for the fabrication of conductive films. Fang Y; Zeng X; Chen Y; Ji M; Zheng H; Xu W; Peng DL Nanotechnology; 2020 Aug; 31(35):355601. PubMed ID: 32554887 [TBL] [Abstract][Full Text] [Related]
5. Highly Conductive, Flexible, and Oxidation-Resistant Cu-Ni Electrodes Produced from Hybrid Inks at Low Temperatures. Tomotoshi D; Oogami R; Kawasaki H ACS Appl Mater Interfaces; 2021 May; 13(17):20906-20915. PubMed ID: 33891413 [TBL] [Abstract][Full Text] [Related]
6. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. Joo SJ; Park SH; Moon CJ; Kim HS ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508 [TBL] [Abstract][Full Text] [Related]
7. All-Solution-Processed Thermally and Chemically Stable Copper-Nickel Core-Shell Nanowire-Based Composite Window Electrodes for Perovskite Solar Cells. Kim K; Kwon HC; Ma S; Lee E; Yun SC; Jang G; Yang H; Moon J ACS Appl Mater Interfaces; 2018 Sep; 10(36):30337-30347. PubMed ID: 30118211 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air. Kanzaki M; Kawaguchi Y; Kawasaki H ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247 [TBL] [Abstract][Full Text] [Related]
9. Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure. Park HJ; Jo Y; Cho MK; Young Woo J; Kim D; Lee SY; Choi Y; Jeong S Nanoscale; 2018 Mar; 10(11):5047-5053. PubMed ID: 29411848 [TBL] [Abstract][Full Text] [Related]
10. One-Pot Synthesis of Superfine Core-Shell Cu@metal Nanowires for Highly Tenacious Transparent LED Dimmer. Wang H; Wu C; Huang Y; Sun F; Lin N; Soomro AM; Zhong Z; Yang X; Chen X; Kang J; Cai D ACS Appl Mater Interfaces; 2016 Oct; 8(42):28709-28717. PubMed ID: 27681366 [TBL] [Abstract][Full Text] [Related]
11. Ambient atmosphere-processable, printable Cu electrodes for flexible device applications: structural welding on a millisecond timescale of surface oxide-free Cu nanoparticles. Oh SJ; Jo Y; Lee EJ; Lee SS; Kang YH; Jeon HJ; Cho SY; Park JS; Seo YH; Ryu BH; Choi Y; Jeong S Nanoscale; 2015 Mar; 7(9):3997-4004. PubMed ID: 25626472 [TBL] [Abstract][Full Text] [Related]
12. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics. Rager MS; Aytug T; Veith GM; Joshi P ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684 [TBL] [Abstract][Full Text] [Related]
13. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes. Yu MH; Joo SJ; Kim HS Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291 [TBL] [Abstract][Full Text] [Related]
14. Facile Preparation of Cu/Ag Core/Shell Electrospun Nanofibers as Highly Stable and Flexible Transparent Conductive Electrodes for Optoelectronic Devices. Jiang DH; Tsai PC; Kuo CC; Jhuang FC; Guo HC; Chen SP; Liao YC; Satoh T; Tung SH ACS Appl Mater Interfaces; 2019 Mar; 11(10):10118-10127. PubMed ID: 30761891 [TBL] [Abstract][Full Text] [Related]
15. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics. Lee C; Kim NR; Koo J; Lee YJ; Lee HM Nanotechnology; 2015 Nov; 26(45):455601. PubMed ID: 26489391 [TBL] [Abstract][Full Text] [Related]
16. Silver Shell Thickness-Dependent Conductivity of Coatings Based on Ni@Ag Core@shell Nanoparticles. Pajor-Świerzy A; Kozak K; Duraczyńska D; Wiertel-Pochopień A; Zawała J; Szczepanowicz K Nanotechnol Sci Appl; 2023; 16():73-84. PubMed ID: 38161487 [TBL] [Abstract][Full Text] [Related]
17. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces. Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883 [TBL] [Abstract][Full Text] [Related]
18. Low temperature growth of graphene on Cu-Ni alloy nanofibers for stable, flexible electrodes. Liu ZD; Yin ZY; Du ZH; Yang Y; Zhu MM; Xie LH; Huang W Nanoscale; 2014 May; 6(10):5110-5. PubMed ID: 24733262 [TBL] [Abstract][Full Text] [Related]
19. Self-catalyzed copper-silver complex inks for low-cost fabrication of highly oxidation-resistant and conductive copper-silver hybrid tracks at a low temperature below 100 °C. Li W; Li CF; Lang F; Jiu J; Ueshima M; Wang H; Liu ZQ; Suganuma K Nanoscale; 2018 Mar; 10(11):5254-5263. PubMed ID: 29498383 [TBL] [Abstract][Full Text] [Related]
20. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. Lee D; Paeng D; Park HK; Grigoropoulos CP ACS Nano; 2014 Oct; 8(10):9807-14. PubMed ID: 25130917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]