These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 29226709)
21. The control of complex finger movements by directional information flow between mesial frontocentral areas and the primary motor cortex. Boenstrup M; Feldheim J; Heise K; Gerloff C; Hummel FC Eur J Neurosci; 2014 Sep; 40(6):2888-97. PubMed ID: 25040255 [TBL] [Abstract][Full Text] [Related]
23. Neural networks for the coordination of the hands in time. Ullén F; Forssberg H; Ehrsson HH J Neurophysiol; 2003 Feb; 89(2):1126-35. PubMed ID: 12574485 [TBL] [Abstract][Full Text] [Related]
24. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Lewis PA; Wing AM; Pope PA; Praamstra P; Miall RC Neuropsychologia; 2004; 42(10):1301-12. PubMed ID: 15193939 [TBL] [Abstract][Full Text] [Related]
25. Reach-relevant somatosensory signals modulate activity in the tactile suppression network. Arikan BE; Voudouris D; Voudouri-Gertz H; Sommer J; Fiehler K Neuroimage; 2021 Aug; 236():118000. PubMed ID: 33864902 [TBL] [Abstract][Full Text] [Related]
26. Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study. Fuggetta G; Fiaschi A; Manganotti P Neuroimage; 2005 Oct; 27(4):896-908. PubMed ID: 16054397 [TBL] [Abstract][Full Text] [Related]
27. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Debaere F; Wenderoth N; Sunaert S; Van Hecke P; Swinnen SP Neuroimage; 2004 Apr; 21(4):1416-27. PubMed ID: 15050567 [TBL] [Abstract][Full Text] [Related]
28. Linking visual gamma to task-related brain networks-a simultaneous EEG-fMRI study. Beldzik E; Domagalik A; Beres A; Marek T Psychophysiology; 2019 Dec; 56(12):e13462. PubMed ID: 31420884 [TBL] [Abstract][Full Text] [Related]
29. Neurophysiological features of tactile versus visual guidance of ongoing movement. Lee PJ; Kukke SN Exp Brain Res; 2017 Sep; 235(9):2615-2625. PubMed ID: 28573309 [TBL] [Abstract][Full Text] [Related]
30. Wavelet analysis as a tool for investigating movement-related cortical oscillations in EEG-fMRI coregistration. Storti SF; Formaggio E; Beltramello A; Fiaschi A; Manganotti P Brain Topogr; 2010 Mar; 23(1):46-57. PubMed ID: 19921416 [TBL] [Abstract][Full Text] [Related]
31. Recruitment of the motor system during music listening: An ALE meta-analysis of fMRI data. Gordon CL; Cobb PR; Balasubramaniam R PLoS One; 2018; 13(11):e0207213. PubMed ID: 30452442 [TBL] [Abstract][Full Text] [Related]
32. Decoding sequential finger movements from preparatory activity in higher-order motor regions: a functional magnetic resonance imaging multi-voxel pattern analysis. Nambu I; Hagura N; Hirose S; Wada Y; Kawato M; Naito E Eur J Neurosci; 2015 Nov; 42(10):2851-9. PubMed ID: 26342210 [TBL] [Abstract][Full Text] [Related]
33. Phase-amplitude coupling and the BOLD signal: A simultaneous intracranial EEG (icEEG) - fMRI study in humans performing a finger-tapping task. Murta T; Chaudhary UJ; Tierney TM; Dias A; Leite M; Carmichael DW; Figueiredo P; Lemieux L Neuroimage; 2017 Feb; 146():438-451. PubMed ID: 27554531 [TBL] [Abstract][Full Text] [Related]
34. Neural correlates of the complexity of rhythmic finger tapping. Dhamala M; Pagnoni G; Wiesenfeld K; Zink CF; Martin M; Berns GS Neuroimage; 2003 Oct; 20(2):918-26. PubMed ID: 14568462 [TBL] [Abstract][Full Text] [Related]
35. How does the brain create rhythms? Szirmai I Ideggyogy Sz; 2010 Jan; 63(1-2):13-23. PubMed ID: 20420120 [TBL] [Abstract][Full Text] [Related]
36. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Gerloff C; Richard J; Hadley J; Schulman AE; Honda M; Hallett M Brain; 1998 Aug; 121 ( Pt 8)():1513-31. PubMed ID: 9712013 [TBL] [Abstract][Full Text] [Related]
37. Mechanical flutter stimulation induces a lasting response in the sensorimotor cortex as revealed with BOLD fMRI. Christova M; Golaszewski S; Ischebeck A; Kunz A; Rafolt D; Nardone R; Gallasch E Hum Brain Mapp; 2013 Nov; 34(11):2767-74. PubMed ID: 22611041 [TBL] [Abstract][Full Text] [Related]
38. Characterization of Cortical Networks and Corticocortical Functional Connectivity Mediating Arbitrary Visuomotor Mapping. Brovelli A; Chicharro D; Badier JM; Wang H; Jirsa V J Neurosci; 2015 Sep; 35(37):12643-58. PubMed ID: 26377456 [TBL] [Abstract][Full Text] [Related]
39. Human EEG reveals distinct neural correlates of power and precision grasping types. Iturrate I; Chavarriaga R; Pereira M; Zhang H; Corbet T; Leeb R; Millán JDR Neuroimage; 2018 Nov; 181():635-644. PubMed ID: 30056196 [TBL] [Abstract][Full Text] [Related]
40. Functional inter-cortical connectivity among motor-related cortices during motor imagery: A magnetoencephalographic study. Obayashi Y; Uemura JI; Hoshiyama M Somatosens Mot Res; 2017 Mar; 34(1):1-8. PubMed ID: 27892762 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]