These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 29226803)

  • 21. SNooPer: a machine learning-based method for somatic variant identification from low-pass next-generation sequencing.
    Spinella JF; Mehanna P; Vidal R; Saillour V; Cassart P; Richer C; Ouimet M; Healy J; Sinnett D
    BMC Genomics; 2016 Nov; 17(1):912. PubMed ID: 27842494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance of in silico prediction tools for the classification of rare BRCA1/2 missense variants in clinical diagnostics.
    Ernst C; Hahnen E; Engel C; Nothnagel M; Weber J; Schmutzler RK; Hauke J
    BMC Med Genomics; 2018 Mar; 11(1):35. PubMed ID: 29580235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Comprehensive Evaluation of the Performance of Prediction Algorithms on Clinically Relevant Missense Variants.
    Qorri E; Takács B; Gráf A; Enyedi MZ; Pintér L; Kiss E; Haracska L
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variant effect prediction tools assessed using independent, functional assay-based datasets: implications for discovery and diagnostics.
    Mahmood K; Jung CH; Philip G; Georgeson P; Chung J; Pope BJ; Park DJ
    Hum Genomics; 2017 May; 11(1):10. PubMed ID: 28511696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate proteome-wide missense variant effect prediction with AlphaMissense.
    Cheng J; Novati G; Pan J; Bycroft C; Žemgulytė A; Applebaum T; Pritzel A; Wong LH; Zielinski M; Sargeant T; Schneider RG; Senior AW; Jumper J; Hassabis D; Kohli P; Avsec Ž
    Science; 2023 Sep; 381(6664):eadg7492. PubMed ID: 37733863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DEEPre: sequence-based enzyme EC number prediction by deep learning.
    Li Y; Wang S; Umarov R; Xie B; Fan M; Li L; Gao X
    Bioinformatics; 2018 Mar; 34(5):760-769. PubMed ID: 29069344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. News from the protein mutability landscape.
    Hecht M; Bromberg Y; Rost B
    J Mol Biol; 2013 Nov; 425(21):3937-48. PubMed ID: 23896297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting functional consequences of mutations using molecular interaction network features.
    Ozturk K; Carter H
    Hum Genet; 2022 Jun; 141(6):1195-1210. PubMed ID: 34432150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization on the oncogenic effect of the missense mutations of p53 via machine learning.
    Pan Q; Portelli S; Nguyen TB; Ascher DB
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38018912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DiscMLA: An Efficient Discriminative Motif Learning Algorithm over High-Throughput Datasets.
    Zhang H; Zhu L; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1810-1820. PubMed ID: 27164602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A phylogenetic approach to assessing the significance of missense mutations in disease genes.
    Santibáñez Koref MF; Gangeswaran R; Santibáñez Koref IP; Shanahan N; Hancock JM
    Hum Mutat; 2003 Jul; 22(1):51-8. PubMed ID: 12815593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A transfer learning approach via procrustes analysis and mean shift for cancer drug sensitivity prediction.
    Turki T; Wei Z; Wang JTL
    J Bioinform Comput Biol; 2018 Jun; 16(3):1840014. PubMed ID: 29945499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying mouse developmental essential genes using machine learning.
    Tian D; Wenlock S; Kabir M; Tzotzos G; Doig AJ; Hentges KE
    Dis Model Mech; 2018 Dec; 11(12):. PubMed ID: 30563825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of Protein-Protein Interaction Sites with Machine-Learning-Based Data-Cleaning and Post-Filtering Procedures.
    Liu GH; Shen HB; Yu DJ
    J Membr Biol; 2016 Apr; 249(1-2):141-53. PubMed ID: 26563228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational identification of residues that modulate voltage sensitivity of voltage-gated potassium channels.
    Li B; Gallin WJ
    BMC Struct Biol; 2005 Aug; 5():16. PubMed ID: 16111489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants.
    Greenblatt MS; Beaudet JG; Gump JR; Godin KS; Trombley L; Koh J; Bond JP
    Oncogene; 2003 Feb; 22(8):1150-63. PubMed ID: 12606942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine.
    Deng L; Pan J; Xu X; Yang W; Liu C; Liu H
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):522. PubMed ID: 30598073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TLmutation: Predicting the Effects of Mutations Using Transfer Learning.
    Shamsi Z; Chan M; Shukla D
    J Phys Chem B; 2020 May; 124(19):3845-3854. PubMed ID: 32308006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.