These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29226929)

  • 1. Synergistic arsenic(v) and lead(ii) retention on synthetic jarosite. I. Simultaneous structural incorporation behaviour and mechanism.
    Aguilar-Carrillo J; Villalobos M; Pi-Puig T; Escobar-Quiroz IN; Romero FM
    Environ Sci Process Impacts; 2018 Feb; 20(2):354-369. PubMed ID: 29226929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimony and arsenic partitioning during Fe
    Karimian N; Johnston SG; Burton ED
    Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications.
    Asta MP; Cama J; Martínez M; Giménez J
    J Hazard Mater; 2009 Nov; 171(1-3):965-72. PubMed ID: 19628332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The positive environmental contribution of jarosite by retaining lead in acid mine drainage areas.
    Figueiredo MO; da Silva TP
    Int J Environ Res Public Health; 2011 May; 8(5):1575-82. PubMed ID: 21655138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thallium(I) sequestration by jarosite and birnessite: Structural incorporation vs surface adsorption.
    Aguilar-Carrillo J; Herrera-García L; Reyes-Domínguez IA; Gutiérrez EJ
    Environ Pollut; 2020 Feb; 257():113492. PubMed ID: 31744683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic behavior during gallic acid-induced redox transformation of jarosite under acidic conditions.
    Tang Y; Xie Y; Lu G; Ye H; Dang Z; Wen Z; Tao X; Xie C; Yi X
    Chemosphere; 2020 Sep; 255():126938. PubMed ID: 32388258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of Pb(II) coprecipitation with natrojarosite and its behavior during acid dissolution.
    Shi M; Min X; Tian C; Hao T; Zhu S; Ge Y; Wang Q; Yan X; Lin Z
    J Environ Sci (China); 2022 Dec; 122():128-137. PubMed ID: 35717078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B
    J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous release of Fe and As during the reductive dissolution of Pb-As jarosite by Shewanella putrefaciens CN32.
    Smeaton CM; Walshe GE; Smith AM; Hudson-Edwards KA; Dubbin WE; Wright K; Beale AM; Fryer BJ; Weisener CG
    Environ Sci Technol; 2012 Dec; 46(23):12823-31. PubMed ID: 23126670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent redistribution behavior of divalent metal cations associated with Fe(II)-mediated jarosite phase transformation.
    Jin X; Guo C; Tao X; Li X; Xie Y; Dang Z; Lu G
    Environ Pollut; 2024 Jun; 350():124004. PubMed ID: 38641039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions.
    Jones FS; Bigham JM; Gramp JP; Tuovinen OH
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():391-9. PubMed ID: 25280720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification of arsenic-contaminated water with K-jarosite filters.
    Hott RC; Maia LFO; Santos MS; Faria MC; Oliveira LCA; Pereira MC; Bomfeti CA; Rodrigues JL
    Environ Sci Pollut Res Int; 2018 May; 25(14):13857-13867. PubMed ID: 29512010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speciation and precipitation of heavy metals in high-metal and high-acid mine waters from the Iberian Pyrite Belt (Portugal).
    Durães N; Bobos I; da Silva EF
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4562-4576. PubMed ID: 27957691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Raman spectroscopic study of selected natural jarosites.
    Frost RL; Wills RA; Weier ML; Martens W; Mills S
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jan; 63(1):1-8. PubMed ID: 16314141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NIR spectroscopy of jarosites.
    Frost RL; Wills RA; Martens W; Weier M
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):869-74. PubMed ID: 16303633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cassiterite controlling arsenic mobility in an abandoned stanniferous tailings impoundment at Llallagua, Bolivia.
    Romero FM; Canet C; Alfonso P; Zambrana RN; Soto N
    Sci Total Environ; 2014 May; 481():100-7. PubMed ID: 24589759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic immobilization as alunite-type phases: the arsenate substitution in alunite and hydronium alunite.
    Sunyer A; Currubí M; Viñals J
    J Hazard Mater; 2013 Oct; 261():559-69. PubMed ID: 23994654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partitioning and transformation behavior of arsenic during Fe(III)-As(III)-As(V)-SO
    Ma X; Zhang J; Gomez MA; Ding Y; Yao S; Lv H; Wang X; Wang S; Jia Y
    Sci Total Environ; 2021 Dec; 799():149474. PubMed ID: 34426338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Jarosite as an indicator of water-limited chemical weathering on Mars.
    Madden ME; Bodnar RJ; Rimstidt JD
    Nature; 2004 Oct; 431(7010):821-3. PubMed ID: 15483605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China.
    Liu Q; Chen B; Haderlein S; Gopalakrishnan G; Zhou Y
    Ecotoxicol Environ Saf; 2018 Jul; 155():50-58. PubMed ID: 29501982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.