These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29227495)

  • 1. Fluorescence-activated droplet sorting of lipolytic microorganisms using a compact optical system.
    Qiao Y; Zhao X; Zhu J; Tu R; Dong L; Wang L; Dong Z; Wang Q; Du W
    Lab Chip; 2017 Dec; 18(1):190-196. PubMed ID: 29227495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter.
    Schmid L; Weitz DA; Franke T
    Lab Chip; 2014 Oct; 14(19):3710-8. PubMed ID: 25031157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence-activated droplet sorting of PET degrading microorganisms.
    Qiao Y; Hu R; Chen D; Wang L; Wang Z; Yu H; Fu Y; Li C; Dong Z; Weng YX; Du W
    J Hazard Mater; 2022 Feb; 424(Pt B):127417. PubMed ID: 34673397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms.
    Najah M; Calbrix R; Mahendra-Wijaya IP; Beneyton T; Griffiths AD; Drevelle A
    Chem Biol; 2014 Dec; 21(12):1722-32. PubMed ID: 25525991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CotA laccase: high-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics.
    Beneyton T; Coldren F; Baret JC; Griffiths AD; Taly V
    Analyst; 2014 Jul; 139(13):3314-23. PubMed ID: 24733162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detachable Acoustophoretic System for Fluorescence-Activated Sorting at the Single-Droplet Level.
    Li P; Ma Z; Zhou Y; Collins DJ; Wang Z; Ai Y
    Anal Chem; 2019 Aug; 91(15):9970-9977. PubMed ID: 31179691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity.
    Baret JC; Miller OJ; Taly V; Ryckelynck M; El-Harrak A; Frenz L; Rick C; Samuels ML; Hutchison JB; Agresti JJ; Link DR; Weitz DA; Griffiths AD
    Lab Chip; 2009 Jul; 9(13):1850-8. PubMed ID: 19532959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh-throughput sorting of microfluidic drops with flow cytometry.
    Lim SW; Abate AR
    Lab Chip; 2013 Dec; 13(23):4563-72. PubMed ID: 24146020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SeParate: multiway fluorescence-activated droplet sorting based on integration of serial and parallel triaging concepts.
    Verbist W; Breukers J; Sharma S; Rutten I; Gerstmans H; Coelmont L; Dal Dosso F; Dallmeier K; Lammertyn J
    Lab Chip; 2024 Mar; 24(7):2107-2121. PubMed ID: 38450543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method to analyze, sort, and retain viability of obligate anaerobic microorganisms from complex microbial communities.
    Thompson AW; Crow MJ; Wadey B; Arens C; Turkarslan S; Stolyar S; Elliott N; Petersen TW; van den Engh G; Stahl DA; Baliga NS
    J Microbiol Methods; 2015 Oct; 117():74-7. PubMed ID: 26187776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting.
    Wu L; Chen P; Dong Y; Feng X; Liu BF
    Biomed Microdevices; 2013 Jun; 15(3):553-60. PubMed ID: 23404263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved method for direct screening of true lipase-producing microorganisms with particular emphasis on alkaline conditions.
    Sorokin DY; Jones BE
    Mikrobiologiia; 2009; 78(1):144-9. PubMed ID: 19334607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferrofluid mediated nanocytometry.
    Kose AR; Koser H
    Lab Chip; 2012 Jan; 12(1):190-6. PubMed ID: 22076536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of Lipase-Producing Microorganisms from Tropical Oilseeds Elaeis guineensis, Ricinus communis, and Jatropha curcas L. from Costa Rica.
    Sandi J; Mata-Araya I; Aguilar F
    Curr Microbiol; 2020 Jun; 77(6):943-952. PubMed ID: 31982967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a novel fluorogenic polyurethane analogue probe in polyester-degrading microorganisms screening by microfluidic droplet.
    Xu A; Liu J; Cao S; Xu B; Guo C; Yu Z; Chen X; Zhou J; Dong W; Jiang M
    Microb Biotechnol; 2023 Feb; 16(2):474-480. PubMed ID: 35881631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence-Activated Droplet Sorting for Single-Cell Directed Evolution.
    Vallejo D; Nikoomanzar A; Paegel BM; Chaput JC
    ACS Synth Biol; 2019 Jun; 8(6):1430-1440. PubMed ID: 31120731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteria Detection and Differentiation Using Impedance Flow Cytometry.
    Clausen CH; Dimaki M; Bertelsen CV; Skands GE; Rodriguez-Trujillo R; Thomsen JD; Svendsen WE
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30336557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet sorting based on the number of encapsulated particles using a solenoid valve.
    Cao Z; Chen F; Bao N; He H; Xu P; Jana S; Jung S; Lian H; Lu C
    Lab Chip; 2013 Jan; 13(1):171-8. PubMed ID: 23160342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting.
    de Wijs K; Liu C; Dusa A; Vercruysse D; Majeed B; Tezcan DS; Blaszkiewicz K; Loo J; Lagae L
    Lab Chip; 2017 Mar; 17(7):1287-1296. PubMed ID: 28252674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of polyurethane-degrading microbes using a quenching fluorescence probe by microfluidic droplet sorting.
    Xia W; Lin H; Zhou X; Wang Y; Cao S; Liu J; Xu A; Dong W; Jiang M
    Chemosphere; 2024 Sep; 364():143060. PubMed ID: 39121966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.