BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 29227526)

  • 21. Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension.
    Majumder K; Wu J
    Int J Mol Sci; 2014 Dec; 16(1):256-83. PubMed ID: 25547491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Research in Antihypertensive Activity of Food Protein-derived Hydrolyzates and Peptides.
    Saleh AS; Zhang Q; Shen Q
    Crit Rev Food Sci Nutr; 2016; 56(5):760-87. PubMed ID: 25036695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioactive peptides and hydrolysates from pulses and their potential use as functional ingredients.
    López-Barrios L; Gutiérrez-Uribe JA; Serna-Saldívar SO
    J Food Sci; 2014 Mar; 79(3):R273-83. PubMed ID: 24547749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Present and future prospects of seaweeds in developing functional foods.
    Mendis E; Kim SK
    Adv Food Nutr Res; 2011; 64():1-15. PubMed ID: 22054934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antihypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat.
    Escudero E; Toldrá F; Sentandreu MA; Nishimura H; Arihara K
    Meat Sci; 2012 Jul; 91(3):382-4. PubMed ID: 22405912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antioxidant and Signal-Modulating Effects of Brown Seaweed-Derived Compounds against Oxidative Stress-Associated Pathology.
    Begum R; Howlader S; Mamun-Or-Rashid ANM; Rafiquzzaman SM; Ashraf GM; Albadrani GM; Sayed AA; Peluso I; Abdel-Daim MM; Uddin MS
    Oxid Med Cell Longev; 2021; 2021():9974890. PubMed ID: 34336128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Previously undescribed antioxidative O-heterocyclic angiotensin converting enzyme inhibitors from the intertidal seaweed Sargassum wightii as potential antihypertensives.
    Maneesh A; Chakraborty K
    Food Res Int; 2018 Nov; 113():474-486. PubMed ID: 30195544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery.
    Kitts DD; Weiler K
    Curr Pharm Des; 2003; 9(16):1309-23. PubMed ID: 12769739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extraction of antioxidative and antihypertensive bioactive peptides from Parkia speciosa seeds.
    Siow HL; Gan CY
    Food Chem; 2013 Dec; 141(4):3435-42. PubMed ID: 23993504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seaweed-derived bioactives as potential energy regulators in obesity and type 2 diabetes.
    Bermano G; Stoyanova T; Hennequart F; Wainwright CL
    Adv Pharmacol; 2020; 87():205-256. PubMed ID: 32089234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Research progress in structure-activity relationship of bioactive peptides.
    Li Y; Yu J
    J Med Food; 2015 Feb; 18(2):147-56. PubMed ID: 25137594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of Bioactive Peptides with α-Amylase Inhibitory Potential from Enzymatic Protein Hydrolysates of Red Seaweed (Porphyra spp).
    Admassu H; Gasmalla MAA; Yang R; Zhao W
    J Agric Food Chem; 2018 May; 66(19):4872-4882. PubMed ID: 29667406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant food-derived Angiotensin I converting enzyme inhibitory peptides.
    Guang C; Phillips RD
    J Agric Food Chem; 2009 Jun; 57(12):5113-20. PubMed ID: 19449887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential of a renin inhibitory peptide from the red seaweed Palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats.
    Fitzgerald C; Aluko RE; Hossain M; Rai DK; Hayes M
    J Agric Food Chem; 2014 Aug; 62(33):8352-6. PubMed ID: 25062358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two novel peptides with angiotensin I converting enzyme inhibitory and antioxidative activities from Scorpaena notata muscle protein hydrolysate.
    Aissaoui N; Abidi F; Hardouin J; Abdelkafi Z; Marrakchi N; Jouenne T; Marzouki MN
    Biotechnol Appl Biochem; 2017 Mar; 64(2):201-210. PubMed ID: 26799603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antidiabetic potential of seaweed and their bioactive compounds: a review of developments in last decade.
    Agarwal S; Singh V; Chauhan K
    Crit Rev Food Sci Nutr; 2023; 63(22):5739-5770. PubMed ID: 35048763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antioxidant and Antidiabetic Properties of Phlorotannins from
    Gisbert M; Franco D; Sineiro J; Moreira R
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Therapeutic Perspectives of Food Bioactive Peptides: A Mini Review.
    Priya S
    Protein Pept Lett; 2019; 26(9):664-675. PubMed ID: 31215368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies.
    Manzoor M; Singh J; Gani A
    Food Chem; 2022 Mar; 373(Pt A):131395. PubMed ID: 34710682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Tricholoma matsutake Peptide with Angiotensin Converting Enzyme Inhibitory and Antioxidative Activities and Antihypertensive Effects in Spontaneously Hypertensive Rats.
    Geng X; Tian G; Zhang W; Zhao Y; Zhao L; Wang H; Ng TB
    Sci Rep; 2016 Apr; 6():24130. PubMed ID: 27052674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.