These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 2922756)

  • 21. Assessing the dose-dependency of allometric scaling performance using physiologically based pharmacokinetic modeling.
    Kirman CR; Sweeney LM; Meek ME; Gargas ML
    Regul Toxicol Pharmacol; 2003 Dec; 38(3):345-67. PubMed ID: 14623485
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism of inhaled dihalomethanes in vivo: differentiation of kinetic constants for two independent pathways.
    Gargas ML; Clewell HJ; Andersen ME
    Toxicol Appl Pharmacol; 1986 Feb; 82(2):211-23. PubMed ID: 3945949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative metabolism of carbon tetrachloride in rats, mice, and hamsters using gas uptake and PBPK modeling.
    Thrall KD; Vucelick ME; Gies RA; Zangar RC; Weitz KK; Poet TS; Springer DL; Grant DM; Benson JM
    J Toxicol Environ Health A; 2000 Aug; 60(8):531-48. PubMed ID: 10983521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A physiologically based pharmacokinetic model for ethylene oxide in mouse, rat, and human.
    Fennell TR; Brown CD
    Toxicol Appl Pharmacol; 2001 Jun; 173(3):161-75. PubMed ID: 11437638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of quantitative modelling in methylene chloride risk assessment.
    Rhomberg L
    Toxicology; 1995 Sep; 102(1-2):95-114. PubMed ID: 7482565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic modeling of beta-chloroprene metabolism: II. The application of physiologically based modeling for cancer dose response analysis.
    Himmelstein MW; Carpenter SC; Evans MV; Hinderliter PM; Kenyon EM
    Toxicol Sci; 2004 May; 79(1):28-37. PubMed ID: 14976335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship between hepatic DNA damage and methylene chloride-induced hepatocarcinogenicity in B6C3F1 mice.
    Graves RJ; Coutts C; Eyton-Jones H; Green T
    Carcinogenesis; 1994 May; 15(5):991-6. PubMed ID: 8200106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic modeling of beta-chloroprene metabolism: I. In vitro rates in liver and lung tissue fractions from mice, rats, hamsters, and humans.
    Himmelstein MW; Carpenter SC; Hinderliter PM
    Toxicol Sci; 2004 May; 79(1):18-27. PubMed ID: 14976339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PBPK modeling/Monte Carlo simulation of methylene chloride kinetic changes in mice in relation to age and acute, subchronic, and chronic inhalation exposure.
    Thomas RS; Yang RS; Morgan DG; Moorman MP; Kermani HR; Sloane RA; O'Connor RW; Adkins B; Gargas ML; Andersen ME
    Environ Health Perspect; 1996 Aug; 104(8):858-65. PubMed ID: 8875160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of varying exposure regimens on methylene chloride-induced lung and liver tumors in female B6C3F1 mice.
    Kari FW; Foley JF; Seilkop SK; Maronpot RR; Anderson MW
    Carcinogenesis; 1993 May; 14(5):819-26. PubMed ID: 8504473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methylene chloride-induced DNA damage: an interspecies comparison.
    Graves RJ; Coutts C; Green T
    Carcinogenesis; 1995 Aug; 16(8):1919-26. PubMed ID: 7634422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adjusting exposure limits for long and short exposure periods using a physiological pharmacokinetic model.
    Andersen ME; MacNaughton MG; Clewell HJ; Paustenbach DJ
    Am Ind Hyg Assoc J; 1987 Apr; 48(4):335-43. PubMed ID: 3591649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of propylene oxide metabolism in microsomes and cytosol of different organs from mouse, rat, and humans.
    Faller TH; Csanády GA; Kreuzer PE; Baur CM; Filser JG
    Toxicol Appl Pharmacol; 2001 Apr; 172(1):62-74. PubMed ID: 11264024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Research strategy for assessing target tissue dosimetry of 1,3-butadiene in laboratory animals and humans.
    Bond JA; Csanády GA; Leavens T; Medinsky MA
    IARC Sci Publ; 1993; (127):45-55. PubMed ID: 8070886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhalation toxicity and carcinogenesis studies of methylene chloride (dichloromethane) in F344/N rats and B6C3F1 mice.
    Mennear JH; McConnell EE; Huff JE; Renne RA; Giddens E
    Ann N Y Acad Sci; 1988; 534():343-51. PubMed ID: 3389664
    [No Abstract]   [Full Text] [Related]  

  • 36. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulation of the toxicokinetics of trichloroethylene, methylene chloride, styrene and n-hexane by a toxicokinetics/toxicodynamics model using experimental data.
    Nakayama Y; Kishida F; Nakatsuka I; Matsuo M
    Environ Sci; 2005; 12(1):21-32. PubMed ID: 15793558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiologically based pharmacokinetics and cancer risk assessment.
    Andersen ME; Krishnan K
    Environ Health Perspect; 1994 Jan; 102 Suppl 1(Suppl 1):103-8. PubMed ID: 8187697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic rate constants for hydroquinone in F344 rat and human liver isolated hepatocytes: application to a PBPK model.
    Poet TS; Wu H; English JC; Corley RA
    Toxicol Sci; 2004 Nov; 82(1):9-25. PubMed ID: 15272136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macromolecular interactions of inhaled methylene chloride in rats and mice.
    Green T; Provan WM; Collinge DC; Guest AE
    Toxicol Appl Pharmacol; 1988 Mar; 93(1):1-10. PubMed ID: 3353996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.