BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29227634)

  • 1. Release of Particulate Iron Sulfide during Shale-Fluid Interaction.
    Kreisserman Y; Emmanuel S
    Environ Sci Technol; 2018 Jan; 52(2):638-643. PubMed ID: 29227634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Element mobilization from Bakken shales as a function of water chemistry.
    Wang L; Burns S; Giammar DE; Fortner JD
    Chemosphere; 2016 Apr; 149():286-93. PubMed ID: 26866966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Pyrite Oxidation on the Pore-Structure Characteristics of Shale Reservoir Rocks under the Interaction of Fracturing Fluid.
    Sun Z; Ni Y; Wu Y; Lei Y
    ACS Omega; 2022 Aug; 7(30):26549-26559. PubMed ID: 35936473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and Reactive Transport Processes Associated with Hydraulic Fracturing of Unconventional Oil/Gas Shales.
    Jew AD; Druhan JL; Ihme M; Kovscek AR; Battiato I; Kaszuba JP; Bargar JR; Brown GE
    Chem Rev; 2022 May; 122(9):9198-9263. PubMed ID: 35404590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity concentrations of
    Wilke FDH; Schettler G; Vieth-Hillebrand A; Kühn M; Rothe H
    J Environ Radioact; 2018 Oct; 190-191():122-129. PubMed ID: 29783196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of hydraulic fracturing additive 2-butoxyethanol using heat activated persulfate in the presence of shale rock.
    Manz KE; Carter KE
    Chemosphere; 2018 Sep; 206():398-404. PubMed ID: 29754064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.
    Craw D
    J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental impact of solution pH on the formation and migration of iron colloids in deep subsurface energy systems.
    Spielman-Sun E; Bland G; Wielinski J; Frouté L; Kovscek AR; Lowry GV; Bargar JR; Noël V
    Sci Total Environ; 2023 Dec; 902():166409. PubMed ID: 37597537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic pollution sources.
    Garelick H; Jones H; Dybowska A; Valsami-Jones E
    Rev Environ Contam Toxicol; 2008; 197():17-60. PubMed ID: 18982996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Critical Review of the Physicochemical Impacts of Water Chemistry on Shale in Hydraulic Fracturing Systems.
    Khan HJ; Spielman-Sun E; Jew AD; Bargar J; Kovscek A; Druhan JL
    Environ Sci Technol; 2021 Feb; 55(3):1377-1394. PubMed ID: 33428391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Speciation and Stability of Uranium in Unconventional Shales: Impact of Hydraulic Fracture Fluid.
    Jew AD; Besançon CJ; Roycroft SJ; Noel VS; Bargar JR; Brown GE
    Environ Sci Technol; 2020 Jun; 54(12):7320-7329. PubMed ID: 32401022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative Dissolution of Sulfide Minerals in Single and Mixed Sulfide Systems under Simulated Acid and Metalliferous Drainage Conditions.
    Qian G; Fan R; Huang J; Pring A; Harmer SL; Zhang H; Rea MAD; Brugger J; Teasdale PR; Gibson CT; Schumann RC; Smart RSC; Gerson AR
    Environ Sci Technol; 2021 Feb; 55(4):2369-2380. PubMed ID: 33507750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO.
    Rhine ED; Onesios KM; Serfes ME; Reinfelder JR; Young LY
    Environ Sci Technol; 2008 Mar; 42(5):1423-9. PubMed ID: 18441783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial colonization and persistence in deep fractured shales is guided by metabolic exchanges and viral predation.
    Amundson KK; Borton MA; Daly RA; Hoyt DW; Wong A; Eder E; Moore J; Wunch K; Wrighton KC; Wilkins MJ
    Microbiome; 2022 Jan; 10(1):5. PubMed ID: 35034639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes.
    Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N
    Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (Bio)dissolution of arsenopyrite coupled with multiple proportions of pyrite: Emphasis on the mobilization and existential state of arsenic.
    Tang A; Wang J; Zhang Y; Hong M; Liu Y; Yang B
    Chemosphere; 2023 Apr; 321():138128. PubMed ID: 36775027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme enrichment of arsenic and rare earth elements in acid mine drainage: Case study of Wiśniówka mining area (south-central Poland).
    Migaszewski ZM; Gałuszka A; Dołęgowska S
    Environ Pollut; 2019 Jan; 244():898-906. PubMed ID: 30469284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides.
    Pi K; Wang Y; Xie X; Ma T; Liu Y; Su C; Zhu Y; Wang Z
    Water Res; 2017 Feb; 109():337-346. PubMed ID: 27926881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid Erosion of Carbonate Fractures and Accessibility of Arsenic-Bearing Minerals:
    Deng H; Fitts JP; Tappero RV; Kim JJ; Peters CA
    Environ Sci Technol; 2020 Oct; 54(19):12502-12510. PubMed ID: 32845141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Galvanic Interactions with Pyrite on the Generation of Acid and Metalliferous Drainage.
    Qian G; Fan R; Short MD; Schumann RC; Li J; St C Smart R; Gerson AR
    Environ Sci Technol; 2018 May; 52(9):5349-5357. PubMed ID: 29608053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.