BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29227634)

  • 21. Mineral Reactions in Shale Gas Reservoirs: Barite Scale Formation from Reusing Produced Water As Hydraulic Fracturing Fluid.
    Paukert Vankeuren AN; Hakala JA; Jarvis K; Moore JE
    Environ Sci Technol; 2017 Aug; 51(16):9391-9402. PubMed ID: 28723084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative Dissolution of Arsenic-Bearing Sulfide Minerals in Groundwater: Impact of Hydrochemical and Hydrodynamic Conditions on Arsenic Release and Surface Evolution.
    Stolze L; Battistel M; Rolle M
    Environ Sci Technol; 2022 Apr; 56(8):5049-5061. PubMed ID: 35377625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release.
    Tabelin CB; Hashimoto A; Igarashi T; Yoneda T
    Sci Total Environ; 2014 Mar; 473-474():244-53. PubMed ID: 24370699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pyrite and Organic Compounds Coexisting in Intrusive Mafic Xenoliths (Hyblean Plateau, Sicily): Implications for Subsurface Abiogenesis.
    Scribano V; Simakov SK; Finocchiaro C; Correale A; Scirè S
    Orig Life Evol Biosph; 2019 Jun; 49(1-2):19-47. PubMed ID: 31302843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant.
    Oliveira ML; Ward CR; Izquierdo M; Sampaio CH; de Brum IA; Kautzmann RM; Sabedot S; Querol X; Silva LF
    Sci Total Environ; 2012 Jul; 430():34-47. PubMed ID: 22613465
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Citrate-enhanced release of arsenic during pyrite oxidation at circumneutral conditions.
    Zhang P; Yao W; Yuan S
    Water Res; 2017 Feb; 109():245-252. PubMed ID: 27912099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep-Subsurface Pressure Stimulates Metabolic Plasticity in Shale-Colonizing
    Booker AE; Hoyt DW; Meulia T; Eder E; Nicora CD; Purvine SO; Daly RA; Moore JD; Wunch K; Pfiffner SM; Lipton MS; Mouser PJ; Wrighton KC; Wilkins MJ
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides.
    Chopard A; Plante B; Benzaazoua M; Bouzahzah H; Marion P
    Chemosphere; 2017 Jan; 166():281-291. PubMed ID: 27705822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid.
    Edwards RWJ; Doster F; Celia MA; Bandilla KW
    Environ Sci Technol; 2017 Dec; 51(23):13779-13787. PubMed ID: 29086564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between pyrite Stability and arsenic mobility during aquifer storage and recovery in southwest central Florida.
    Jones GW; Pichler T
    Environ Sci Technol; 2007 Feb; 41(3):723-30. PubMed ID: 17328175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geochemical conditions conducive for retention of trace elements and radionuclides during shale-fluid interactions.
    Mehta N; Kocar BD
    Environ Sci Process Impacts; 2019 Oct; 21(10):1764-1776. PubMed ID: 31553335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scanning force microscopy studies of the colonization and growth of A. ferrooxidans on the surface of pyrite minerals.
    Pace DL; Mielke RE; Southam G; Porter TL
    Scanning; 2005; 27(3):136-40. PubMed ID: 15934505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic considerations and potential mechanisms.
    Napieralski SA; Fang Y; Marcon V; Forsythe B; Brantley SL; Xu H; Roden EE
    Geobiology; 2022 Mar; 20(2):271-291. PubMed ID: 34633148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current approaches for mitigating acid mine drainage.
    Sahoo PK; Kim K; Equeenuddin SM; Powell MA
    Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Origin, mobility, and temporal evolution of arsenic from a low-contamination catchment in Alpine crystalline rocks.
    Pili E; Tisserand D; Bureau S
    J Hazard Mater; 2013 Nov; 262():887-95. PubMed ID: 22819960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Hydraulic Fracturing on Overlying Aquifers in the Presence of Leaky Abandoned Wells.
    Brownlow JW; James SC; Yelderman JC
    Ground Water; 2016 Nov; 54(6):781-792. PubMed ID: 27144719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selenium speciation in framboidal and euhedral pyrites in shales.
    Matamoros-Veloza A; Peacock CL; Benning LG
    Environ Sci Technol; 2014 Aug; 48(16):8972-9. PubMed ID: 25032506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventional oil.
    Scanlon BR; Reedy RC; Nicot JP
    Environ Sci Technol; 2014 Oct; 48(20):12386-93. PubMed ID: 25233450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanopore Formation and Structural Changes in Black Shale During the Initial Weathering Stage: A Longmaxi Formation Profile in Northwestern Hunan, China.
    Zhuo XZ; Niu BX; Ju YW; Zhang LY; Yan QH; Yang JL
    J Nanosci Nanotechnol; 2021 Jan; 21(1):195-211. PubMed ID: 33213623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring concentration and isotopic composition of methane in groundwater in the Utica Shale hydraulic fracturing region of Ohio.
    Claire Botner E; Townsend-Small A; Nash DB; Xu X; Schimmelmann A; Miller JH
    Environ Monit Assess; 2018 May; 190(6):322. PubMed ID: 29721622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.