These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29227655)

  • 1. Hydrazine Capture and N-N Bond Cleavage at Iron Enabled by Flexible Appended Lewis Acids.
    Kiernicki JJ; Zeller M; Szymczak NK
    J Am Chem Soc; 2017 Dec; 139(50):18194-18197. PubMed ID: 29227655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility of Lewis acids within the secondary coordination sphere: toward a model for cooperative substrate binding.
    Kiernicki JJ; Norwine EE; Lovasz MA; Zeller M; Szymczak NK
    Chem Commun (Camb); 2020 Nov; 56(86):13105-13108. PubMed ID: 33016291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic reduction of hydrazine to ammonia by a mononuclear iron(II) complex on a tris(thiolato)phosphine platform.
    Chang YH; Chan PM; Tsai YF; Lee GH; Hsu HF
    Inorg Chem; 2014 Jan; 53(2):664-6. PubMed ID: 24377381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Fe-N₂ Complex That Generates Hydrazine and Ammonia via Fe═NNH₂: Demonstrating a Hybrid Distal-to-Alternating Pathway for N₂ Reduction.
    Rittle J; Peters JC
    J Am Chem Soc; 2016 Mar; 138(12):4243-8. PubMed ID: 26937584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirements for Lewis Acid-Mediated Capture and N-N Bond Cleavage of Hydrazine at Iron.
    Kiernicki JJ; Zeller M; Szymczak NK
    Inorg Chem; 2019 Jan; 58(2):1147-1154. PubMed ID: 30628782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen fixation revisited on iron(0) dinitrogen phosphine complexes.
    Field LD; Hazari N; Li HL
    Inorg Chem; 2015 May; 54(10):4768-76. PubMed ID: 25945866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mimicking Hydrazine Dehydrogenase for Efficient Electrocatalytic Oxidation of N
    Zheng Y; He F; Chen M; Zhang J; Hu G; Ma D; Guo J; Fan H; Li W; Hu X
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38183-38191. PubMed ID: 32799446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transition metal Lewis acid/base triad system for cooperative substrate binding.
    Tutusaus O; Ni C; Szymczak NK
    J Am Chem Soc; 2013 Mar; 135(9):3403-6. PubMed ID: 23421523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing the Push-Pull Hypothesis: Lewis Acid Augmented N
    Geri JB; Shanahan JP; Szymczak NK
    J Am Chem Soc; 2017 Apr; 139(16):5952-5956. PubMed ID: 28414226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Olefin cis-Dihydroxylation and Aliphatic C-H Bond Oxygenation by a Dioxygen-Derived Electrophilic Iron-Oxygen Oxidant.
    Chatterjee S; Paine TK
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9338-42. PubMed ID: 26088714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of an iron(II) eta(2)-hydrazine complex.
    Crossland JL; Zakharov LN; Tyler DR
    Inorg Chem; 2007 Dec; 46(25):10476-8. PubMed ID: 17983220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bidentate Ligand Featuring Ditopic Lewis Acids in the Second Sphere for Selective Substrate Capture and Activation.
    Beagan DM; Kiernicki JJ; Zeller M; Szymczak NK
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202218907. PubMed ID: 36720708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and reactivity towards hydrazines of bis(cyanamide) and bis(cyanoguanidine) complexes of the iron triad.
    Albertin G; Antoniutti S; Caia A; Castro J
    Dalton Trans; 2014 May; 43(19):7314-23. PubMed ID: 24691705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-mediated hydrazine reduction and the formation of iron-arylimide heterocubanes.
    Zdilla MJ; Verma AK; Lee SC
    Inorg Chem; 2011 Feb; 50(4):1551-62. PubMed ID: 21250686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-N bond cleavage of hydrazines with a multiproton-responsive pincer-type iron complex.
    Umehara K; Kuwata S; Ikariya T
    J Am Chem Soc; 2013 May; 135(18):6754-7. PubMed ID: 23611139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base-mediated conversion of hydrazine to diazene and dinitrogen at an iron center.
    Field LD; Li HL; Magill AM
    Inorg Chem; 2009 Jan; 48(1):5-7. PubMed ID: 19046077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A trans-Hyponitrite Intermediate in the Reductive Coupling and Deoxygenation of Nitric Oxide by a Tricopper-Lewis Acid Complex.
    Lionetti D; de Ruiter G; Agapie T
    J Am Chem Soc; 2016 Apr; 138(15):5008-11. PubMed ID: 27028157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A five-coordinate phosphino/acetate iron(II) scaffold that binds N2, N2H2, N2H4, and NH3 in the sixth site.
    Saouma CT; Moore CE; Rheingold AL; Peters JC
    Inorg Chem; 2011 Nov; 50(22):11285-7. PubMed ID: 22004139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aliphatic C-C Bond Cleavage of α-Hydroxy Ketones by Non-Heme Iron(II) Complexes: Mechanistic Insight into the Reaction Catalyzed by 2,4'-Dihydroxyacetophenone Dioxygenase.
    Rahaman R; Paria S; Paine TK
    Inorg Chem; 2015 Nov; 54(22):10576-86. PubMed ID: 26536067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.