These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Molecular Basis of Valine-Citrulline-PABC Linker Instability in Site-Specific ADCs and Its Mitigation by Linker Design. Dorywalska M; Dushin R; Moine L; Farias SE; Zhou D; Navaratnam T; Lui V; Hasa-Moreno A; Casas MG; Tran TT; Delaria K; Liu SH; Foletti D; O'Donnell CJ; Pons J; Shelton DL; Rajpal A; Strop P Mol Cancer Ther; 2016 May; 15(5):958-70. PubMed ID: 26944918 [TBL] [Abstract][Full Text] [Related]
11. Effect of attachment site on stability of cleavable antibody drug conjugates. Dorywalska M; Strop P; Melton-Witt JA; Hasa-Moreno A; Farias SE; Galindo Casas M; Delaria K; Lui V; Poulsen K; Loo C; Krimm S; Bolton G; Moine L; Dushin R; Tran TT; Liu SH; Rickert M; Foletti D; Shelton DL; Pons J; Rajpal A Bioconjug Chem; 2015 Apr; 26(4):650-9. PubMed ID: 25643134 [TBL] [Abstract][Full Text] [Related]
12. Optimization of a pendant-shaped PEGylated linker for antibody-drug conjugates. Tedeschini T; Campara B; Grigoletto A; Zanotto I; Cannella L; Gabbia D; Matsuno Y; Suzuki A; Yoshioka H; Armirotti A; De Martin S; Pasut G J Control Release; 2024 Nov; 375():74-89. PubMed ID: 39216599 [TBL] [Abstract][Full Text] [Related]
13. In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Sanderson RJ; Hering MA; James SF; Sun MM; Doronina SO; Siadak AW; Senter PD; Wahl AF Clin Cancer Res; 2005 Jan; 11(2 Pt 1):843-52. PubMed ID: 15701875 [TBL] [Abstract][Full Text] [Related]
14. Development and Properties of Valine-Alanine based Antibody-Drug Conjugates with Monomethyl Auristatin E as the Potent Payload. Wang Y; Fan S; Zhong W; Zhou X; Li S Int J Mol Sci; 2017 Aug; 18(9):. PubMed ID: 28841157 [TBL] [Abstract][Full Text] [Related]
15. Impact of cathepsin B-sensitive triggers and hydrophilic linkers on in vitro efficacy of novel site-specific antibody-drug conjugates. Bryden F; Martin C; Letast S; Lles E; Viéitez-Villemin I; Rousseau A; Colas C; Brachet-Botineau M; Allard-Vannier E; Larbouret C; Viaud-Massuard MC; Joubert N Org Biomol Chem; 2018 Mar; 16(11):1882-1889. PubMed ID: 29473076 [TBL] [Abstract][Full Text] [Related]
16. A comparison of the activity, lysosomal stability, and efficacy of legumain-cleavable and cathepsin-cleavable ADC linkers. Gray ME; Zielinski KM; Xu F; Elder KK; McKay SJ; Ojo VT; Benjamin SR; Yaseen AA; Brooks TA; Tumey LN Xenobiotica; 2024 Aug; 54(8):458-468. PubMed ID: 38738708 [TBL] [Abstract][Full Text] [Related]
17. Protease-Cleavable Linkers Modulate the Anticancer Activity of Noninternalizing Antibody-Drug Conjugates. Dal Corso A; Cazzamalli S; Gébleux R; Mattarella M; Neri D Bioconjug Chem; 2017 Jul; 28(7):1826-1833. PubMed ID: 28662334 [TBL] [Abstract][Full Text] [Related]
19. Cathepsin B Cleavage of vcMMAE-Based Antibody-Drug Conjugate Is Not Drug Location or Monoclonal Antibody Carrier Specific. Gikanga B; Adeniji NS; Patapoff TW; Chih HW; Yi L Bioconjug Chem; 2016 Apr; 27(4):1040-9. PubMed ID: 26914498 [TBL] [Abstract][Full Text] [Related]
20. Engineering Enzyme-Cleavable Oligonucleotides by Automated Solid-Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers. Jin C; Ei-Sagheer AH; Li S; Vallis KA; Tan W; Brown T Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202114016. PubMed ID: 34953094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]