BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29227920)

  • 1. Efficacy evaluation of electric field frequency and temperature on dielectric properties of collagen cross-linked by glutaraldehyde.
    Marzec E; Pietrucha K
    Colloids Surf B Biointerfaces; 2018 Feb; 162():345-350. PubMed ID: 29227920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selecting the correct scaffold model for assessing of the dielectric response of collagen-based biomaterials.
    Marzec E; Pietrucha K
    Colloids Surf B Biointerfaces; 2018 Nov; 171():506-513. PubMed ID: 30096471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagen-chitosan porous scaffolds used as dermal equivalent.
    Ma L; Gao C; Mao Z; Shen J; Hu X; Han C
    J Biomater Sci Polym Ed; 2003; 14(8):861-74. PubMed ID: 14533863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement in physicochemical properties of collagen casings by glutaraldehyde cross-linking and drying temperature regulating.
    Chen C; Liu F; Yu Z; Ma Y; Goff HD; Zhong F
    Food Chem; 2020 Jul; 318():126404. PubMed ID: 32135426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore structure and dielectric behaviour of the 3D collagen-DAC scaffolds designed for nerve tissue repair.
    Pietrucha K; Marzec E; Kudzin M
    Int J Biol Macromol; 2016 Nov; 92():1298-1306. PubMed ID: 27519295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric properties of the collagen-glycosaminoglycans scaffolds in the temperature range of thermal decomposition.
    Pietrucha K; Marzec E
    Biophys Chem; 2005 Oct; 118(1):51-6. PubMed ID: 16099587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. XPS study for the microstructure development of hydroxyapatite-collagen nanocomposites cross-linked using glutaraldehyde.
    Chang MC; Tanaka J
    Biomaterials; 2002 Sep; 23(18):3879-85. PubMed ID: 12164193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of different methods of cross-linking of collagen on its dielectric properties.
    Marzec E; Pietrucha K
    Biophys Chem; 2008 Feb; 132(2-3):89-96. PubMed ID: 17997010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites.
    Kikuchi M; Matsumoto HN; Yamada T; Koyama Y; Takakuda K; Tanaka J
    Biomaterials; 2004 Jan; 25(1):63-9. PubMed ID: 14580909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric study of interaction of water with normal and osteoarthritis femoral condyle cartilage.
    Marzec E; Olszewski J; Kaczmarczyk J; Richter M; Trzeciak T; Nowocień K; Malak R; Samborski W
    Bioelectrochemistry; 2016 Aug; 110():32-40. PubMed ID: 27015448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. II. Long-term in vitro/in vivo sensitivity characteristics of sensors with NDGA- or GA-crosslinked collagen scaffolds.
    Ju YM; Yu B; West L; Moussy Y; Moussy F
    J Biomed Mater Res A; 2010 Feb; 92(2):650-8. PubMed ID: 19235209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal and spectrophotometric studies of new crosslinking method for collagen matrix with glutaraldehyde acetals.
    Yoshioka SA; Goissis G
    J Mater Sci Mater Med; 2008 Mar; 19(3):1215-23. PubMed ID: 17701321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the dielectric behaviour of collagen-algal sulfated polysaccharide blends: effect of glutaraldehyde crosslinking.
    Figueiró SD; Macêdo AA; Melo MR; Freitas AL; Moreira RA; de Oliveira RS; Góes JC; Sombra AS
    Biophys Chem; 2006 Mar; 120(2):154-9. PubMed ID: 16337076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Construction of dermal skeleton by double cross-linking with glutaraldehyde and ultraviolet radiation].
    Gu H; He L; Liu L; Jin YC
    Zhonghua Shao Shang Za Zhi; 2008 Apr; 24(2):114-7. PubMed ID: 18785411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices.
    Han B; Jaurequi J; Tang BW; Nimni ME
    J Biomed Mater Res A; 2003 Apr; 65(1):118-24. PubMed ID: 12635161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. I. In vitro/in vivo stability of the scaffold and in vitro sensitivity of the glucose sensor with scaffold.
    Ju YM; Yu B; Koob TJ; Moussy Y; Moussy F
    J Biomed Mater Res A; 2008 Oct; 87(1):136-46. PubMed ID: 18085651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From collagen-chitosan blends to three-dimensional scaffolds: the influences of chitosan on collagen nanofibrillar structure and mechanical property.
    Wang X; Sang L; Luo D; Li X
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):233-40. PubMed ID: 20880671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional infrared spectroscopic study on the thermally induced structural changes of glutaraldehyde-crosslinked collagen.
    Tian Z; Wu K; Liu W; Shen L; Li G
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():356-63. PubMed ID: 25617846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of collagen gel with high viscoelasticity and thermal stability via combining cross-linking and dehydration.
    Tian Z; Shen L; Liu W; Li G
    J Biomed Mater Res A; 2020 Sep; 108(9):1934-1943. PubMed ID: 32319162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyanionic collagen membranes for guided tissue regeneration: Effect of progressive glutaraldehyde cross-linking on biocompatibility and degradation.
    Veríssimo DM; Leitão RF; Ribeiro RA; Figueiró SD; Sombra AS; Góes JC; Brito GA
    Acta Biomater; 2010 Oct; 6(10):4011-8. PubMed ID: 20433958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.