These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 29227953)
1. Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water. Li J; Xing X; Li J; Shi M; Lin A; Xu C; Zheng J; Li R Environ Pollut; 2018 Mar; 234():677-683. PubMed ID: 29227953 [TBL] [Abstract][Full Text] [Related]
2. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters. Wang HY; Gao HW Environ Sci Pollut Res Int; 2009 May; 16(3):339-47. PubMed ID: 18998184 [TBL] [Abstract][Full Text] [Related]
3. Characteristics and adsorption study of the activated carbon derived from municipal sewage sludge. Guo T; Yao S; Chen H; Yu X; Wang M; Chen Y Water Sci Technol; 2017 Oct; 76(7-8):1697-1705. PubMed ID: 28991786 [TBL] [Abstract][Full Text] [Related]
4. Disposal Situation of Sewage Sludge from Municipal Wastewater Treatment Plants (WWTPs) and Assessment of the Ecological Risk of Heavy Metals for Its Land Use in Shanxi, China. Duan B; Zhang W; Zheng H; Wu C; Zhang Q; Bu Y Int J Environ Res Public Health; 2017 Jul; 14(7):. PubMed ID: 28753993 [TBL] [Abstract][Full Text] [Related]
5. A novel waste activated sludge multistage utilization strategy for preparing carbon-based Fenton-like catalysts: Catalytic performance assessment and micro-interfacial mechanisms. Ai J; Zhang W; Liao G; Chen F; Wang D Water Res; 2019 Mar; 150():473-487. PubMed ID: 30572278 [TBL] [Abstract][Full Text] [Related]
6. Biosorption of heavy metals from aqueous solutions using activated sludge, Aeromasss hydrophyla, and Branhamella spp based on modeling with GEOCHEM. Kurniawan TA; Lo W; Othman MHD; Goh HH; Chong KK Environ Res; 2022 Nov; 214(Pt 4):114070. PubMed ID: 35988827 [TBL] [Abstract][Full Text] [Related]
7. Total concentrations and fractions of Cd, Cr, Pb, Cu, Ni and Zn in sewage sludge from municipal and industrial wastewater treatment plants. Wang C; Hu X; Chen ML; Wu YH J Hazard Mater; 2005 Mar; 119(1-3):245-9. PubMed ID: 15752872 [TBL] [Abstract][Full Text] [Related]
8. Removing heavy metals from wastewaters with use of shales accompanying the coal beds. Jabłońska B; Siedlecka E J Environ Manage; 2015 May; 155():58-66. PubMed ID: 25770963 [TBL] [Abstract][Full Text] [Related]
9. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent. Zhou G; Luo J; Liu C; Chu L; Ma J; Tang Y; Zeng Z; Luo S Water Res; 2016 Feb; 89():151-60. PubMed ID: 26650450 [TBL] [Abstract][Full Text] [Related]
10. Activated sludge process enabling highly efficient removal of heavy metal in wastewater. Liu GH; Tang X; Yuan J; Li Q; Qi L; Wang H; Ye Z; Zhao Q Environ Sci Pollut Res Int; 2023 Feb; 30(8):21132-21143. PubMed ID: 36264470 [TBL] [Abstract][Full Text] [Related]
11. Application of ionic liquids for the removal of heavy metals from wastewater and activated sludge. Fuerhacker M; Haile TM; Kogelnig D; Stojanovic A; Keppler B Water Sci Technol; 2012; 65(10):1765-73. PubMed ID: 22546790 [TBL] [Abstract][Full Text] [Related]
12. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management. Bratina B; Šorgo A; Kramberger J; Ajdnik U; Zemljič LF; Ekart J; Šafarič R J Environ Manage; 2016 Dec; 183(Pt 3):1009-1025. PubMed ID: 27692514 [TBL] [Abstract][Full Text] [Related]
13. Heavy metal removal from contaminated sludge for land application: a review. Babel S; del Mundo Dacera D Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121 [TBL] [Abstract][Full Text] [Related]
14. Recycling of Sewage Sludge: Synthesis and Application of Sludge-Based Activated Carbon in the Efficient Removal of Cadmium (II) and Lead (II) from Wastewater. Aljubiri SM; Younes AAO; Alosaimi EH; Abdel Daiem MM; Abdel-Salam ET; El-Shwiniy WH Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337354 [TBL] [Abstract][Full Text] [Related]
15. The effect of bioleaching on sewage sludge pyrolysis. Chen Z; Hu M; Cui B; Liu S; Guo D; Xiao B Waste Manag; 2016 Feb; 48():383-388. PubMed ID: 26481636 [TBL] [Abstract][Full Text] [Related]
16. Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye. Khoshbouy R; Takahashi F; Yoshikawa K Environ Res; 2019 Aug; 175():457-467. PubMed ID: 31158564 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of sewage sludge-based carbon/TiO Khosravi M; Mehrdadi N; Nabi Bidhendi G; Baghdadi M Water Environ Res; 2020 Apr; 92(4):588-603. PubMed ID: 31701622 [TBL] [Abstract][Full Text] [Related]
18. Removal of heavy metals from industrial sludge with new plant-based washing agents. Xu X; Yang Y; Wang G; Zhang S; Cheng Z; Li T; Yang Z; Xian J; Yang Y; Zhou W Chemosphere; 2020 May; 246():125816. PubMed ID: 31918109 [TBL] [Abstract][Full Text] [Related]
19. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge. Xu Y; Zhang C; Zhao M; Rong H; Zhang K; Chen Q Chemosphere; 2017 Feb; 168():1152-1157. PubMed ID: 27806888 [TBL] [Abstract][Full Text] [Related]
20. Heavy metal removal and speciation transformation through the calcination treatment of phosphorus-enriched sewage sludge ash. Li R; Zhao W; Li Y; Wang W; Zhu X J Hazard Mater; 2015; 283():423-31. PubMed ID: 25464279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]