These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29227967)

  • 1. Monte Carlo simulations of electrical percolation in multicomponent thin films with nanofillers.
    Ni X; Hui C; Su N; Jiang W; Liu F
    Nanotechnology; 2018 Feb; 29(7):075401. PubMed ID: 29227967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring.
    Soto M; Esteva M; Martínez-Romero O; Baez J; Elías-Zúñiga A
    Materials (Basel); 2015 Sep; 8(10):6697-6718. PubMed ID: 28793594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D percolation model for multicomponent nanocarbon composites: the critical role of nematic transition.
    Ni X; Hui C; Su N; Cutler R; Liu F
    Nanotechnology; 2019 May; 30(18):185302. PubMed ID: 30673633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of shape and flexibility of conductive fillers in nanocomposites on percolating network formation and electrical conductivity.
    Kwon S; Cho HW; Gwon G; Kim H; Sung BJ
    Phys Rev E; 2016 Mar; 93(3):032501. PubMed ID: 27078399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connectivity percolation of polydisperse anisotropic nanofillers.
    Otten RH; van der Schoot P
    J Chem Phys; 2011 Mar; 134(9):094902. PubMed ID: 21384998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets.
    Oskouyi AB; Sundararaj U; Mertiny P
    Materials (Basel); 2014 Mar; 7(4):2501-2521. PubMed ID: 28788580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculating the Electrical Conductivity of Graphene Nanoplatelet Polymer Composites by a Monte Carlo Method.
    Fang C; Zhang J; Chen X; Weng GJ
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32521611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation.
    Spanos P; Elsbernd P; Ward B; Koenck T
    Philos Trans A Math Phys Eng Sci; 2013 Jun; 371(1993):20120494. PubMed ID: 23690646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nearest-neighbor connectedness theory: A general approach to continuum percolation.
    Coupette F; de Bruijn R; Bult P; Finner S; Miller MA; van der Schoot P; Schilling T
    Phys Rev E; 2021 Apr; 103(4-1):042115. PubMed ID: 34005937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometrical and physical effects of nanofillers on percolation and electrical conductivity of polymer carbon-based nanocomposites: a general micro-mechanical model.
    Payandehpeyman J; Mazaheri M
    Soft Matter; 2023 Jan; 19(3):530-539. PubMed ID: 36541407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Monte Carlo Method for Simulating the Electrical Percolation Behavior of Conductive Polymer Composites with a Carbon-Based Filling.
    Zhang Z; Hu L; Wang R; Zhang S; Fu L; Li M; Xiao Q
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergy effect in hybrid nanocomposites based on carbon nanotubes and graphene nanoplatelets.
    Gbaguidi A; Namilae S; Kim D
    Nanotechnology; 2020 Apr; 31(25):255704. PubMed ID: 32168500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridge percolation: electrical connectivity of discontinued conducting slabs by metallic nanowires.
    Baret A; Bardet L; Oser D; Langley DP; Balty F; Bellet D; Nguyen ND
    Nanoscale; 2024 May; 16(17):8361-8368. PubMed ID: 38323509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers.
    Wang Z; Liu J; Wu S; Wang W; Zhang L
    Phys Chem Chem Phys; 2010 Mar; 12(12):3014-30. PubMed ID: 20449394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-size effects in nanocomposite thin films and fibers.
    Stevens DR; Skau EW; Downen LN; Roman MP; Clarke LI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021126. PubMed ID: 21928968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electrical properties of polymer nanocomposites with carbon nanotube fillers.
    Hu N; Masuda Z; Yan C; Yamamoto G; Fukunaga H; Hashida T
    Nanotechnology; 2008 May; 19(21):215701. PubMed ID: 21730580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation.
    Cho HW; Kim SW; Kim J; Kim UJ; Im K; Park JJ; Sung BJ
    J Chem Phys; 2016 May; 144(19):194903. PubMed ID: 27208970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-based polymer nanocomposites as dielectric energy storage materials.
    Al-Saleh MH
    Nanotechnology; 2019 Feb; 30(6):062001. PubMed ID: 30523988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual geometric percolation of hard nanorods in the uniaxial nematic liquid crystalline phase.
    Finner SP; Atashpendar A; Schilling T; van der Schoot P
    Phys Rev E; 2019 Dec; 100(6-1):062129. PubMed ID: 31962472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal Percolation in Well-Defined Nanocomposite Thin Films.
    Chang BS; Li C; Dai J; Evans K; Huang J; He M; Hu W; Tian Z; Xu T
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14579-14587. PubMed ID: 35311286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.