BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 29228193)

  • 1. DeepSF: deep convolutional neural network for mapping protein sequences to folds.
    Hou J; Adhikari B; Cheng J
    Bioinformatics; 2018 Apr; 34(8):1295-1303. PubMed ID: 29228193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Protein Fold Recognition by Deep Learning Networks.
    Jo T; Hou J; Eickholt J; Cheng J
    Sci Rep; 2015 Dec; 5():17573. PubMed ID: 26634993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ensemble approach to protein fold classification by integration of template-based assignment and support vector machine classifier.
    Xia J; Peng Z; Qi D; Mu H; Yang J
    Bioinformatics; 2017 Mar; 33(6):863-870. PubMed ID: 28039166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FALCON@home: a high-throughput protein structure prediction server based on remote homologue recognition.
    Wang C; Zhang H; Zheng WM; Xu D; Zhu J; Wang B; Ning K; Sun S; Li SC; Bu D
    Bioinformatics; 2016 Feb; 32(3):462-4. PubMed ID: 26454278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein threading using residue co-variation and deep learning.
    Zhu J; Wang S; Bu D; Xu J
    Bioinformatics; 2018 Jul; 34(13):i263-i273. PubMed ID: 29949980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence comparison and protein structure prediction.
    Dunbrack RL
    Curr Opin Struct Biol; 2006 Jun; 16(3):374-84. PubMed ID: 16713709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EigenTHREADER: analogous protein fold recognition by efficient contact map threading.
    Buchan DWA; Jones DT
    Bioinformatics; 2017 Sep; 33(17):2684-2690. PubMed ID: 28419258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving protein fold recognition with hybrid profiles combining sequence and structure evolution.
    Ghouzam Y; Postic G; de Brevern AG; Gelly JC
    Bioinformatics; 2015 Dec; 31(23):3782-9. PubMed ID: 26254434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DescFold: a web server for protein fold recognition.
    Yan RX; Si JN; Wang C; Zhang Z
    BMC Bioinformatics; 2009 Dec; 10():416. PubMed ID: 20003426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical learning architecture with automatic feature selection for multiclass protein fold classification.
    Huang CD; Lin CT; Pal NR
    IEEE Trans Nanobioscience; 2003 Dec; 2(4):221-32. PubMed ID: 15376912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HHalign-Kbest: exploring sub-optimal alignments for remote homology comparative modeling.
    Yu J; Picord G; Tuffery P; Guerois R
    Bioinformatics; 2015 Dec; 31(23):3850-2. PubMed ID: 26231431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments.
    Zhou H; Zhou Y
    Proteins; 2005 Feb; 58(2):321-8. PubMed ID: 15523666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepT3: deep convolutional neural networks accurately identify Gram-negative bacterial type III secreted effectors using the N-terminal sequence.
    Xue L; Tang B; Chen W; Luo J
    Bioinformatics; 2019 Jun; 35(12):2051-2057. PubMed ID: 30407530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep convolutional networks for quality assessment of protein folds.
    Derevyanko G; Grudinin S; Bengio Y; Lamoureux G
    Bioinformatics; 2018 Dec; 34(23):4046-4053. PubMed ID: 29931128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capturing protein sequence-structure specificity using computational sequence design.
    Mach P; Koehl P
    Proteins; 2013 Sep; 81(9):1556-70. PubMed ID: 23609941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.