BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 29228195)

  • 1. Structural connectivity of right frontal hyperactive areas scales with stuttering severity.
    Neef NE; Anwander A; Bütfering C; Schmidt-Samoa C; Friederici AD; Paulus W; Sommer M
    Brain; 2018 Jan; 141(1):191-204. PubMed ID: 29228195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. White matter neuroanatomical differences in young children who stutter.
    Chang SE; Zhu DC; Choo AL; Angstadt M
    Brain; 2015 Mar; 138(Pt 3):694-711. PubMed ID: 25619509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. White matter tractography of the neural network for speech-motor control in children who stutter.
    Misaghi E; Zhang Z; Gracco VL; De Nil LF; Beal DS
    Neurosci Lett; 2018 Mar; 668():37-42. PubMed ID: 29309858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. White matter pathways in persistent developmental stuttering: Lessons from tractography.
    Kronfeld-Duenias V; Civier O; Amir O; Ezrati-Vinacour R; Ben-Shachar M
    J Fluency Disord; 2018 Mar; 55():68-83. PubMed ID: 29050641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study.
    Kemerdere R; de Champfleur NM; Deverdun J; Cochereau J; Moritz-Gasser S; Herbet G; Duffau H
    J Neurol; 2016 Jan; 263(1):157-67. PubMed ID: 26559819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The frontal aslant tract underlies speech fluency in persistent developmental stuttering.
    Kronfeld-Duenias V; Amir O; Ezrati-Vinacour R; Civier O; Ben-Shachar M
    Brain Struct Funct; 2016 Jan; 221(1):365-81. PubMed ID: 25344925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. White matter tract strength correlates with therapy outcome in persistent developmental stuttering.
    Neef NE; Korzeczek A; Primaßin A; Wolff von Gudenberg A; Dechent P; Riedel CH; Paulus W; Sommer M
    Hum Brain Mapp; 2022 Aug; 43(11):3357-3374. PubMed ID: 35415866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia.
    Mandelli ML; Vilaplana E; Brown JA; Hubbard HI; Binney RJ; Attygalle S; Santos-Santos MA; Miller ZA; Pakvasa M; Henry ML; Rosen HJ; Henry RG; Rabinovici GD; Miller BL; Seeley WW; Gorno-Tempini ML
    Brain; 2016 Oct; 139(Pt 10):2778-2791. PubMed ID: 27497488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering.
    Metzger FL; Auer T; Helms G; Paulus W; Frahm J; Sommer M; Neef NE
    Brain Struct Funct; 2018 Jan; 223(1):165-182. PubMed ID: 28741037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociating motor-speech from lexico-semantic systems in the left frontal lobe: insight from a series of 17 awake intraoperative mappings in glioma patients.
    Corrivetti F; de Schotten MT; Poisson I; Froelich S; Descoteaux M; Rheault F; Mandonnet E
    Brain Struct Funct; 2019 Apr; 224(3):1151-1165. PubMed ID: 30637492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disrupted white matter in language and motor tracts in developmental stuttering.
    Connally EL; Ward D; Howell P; Watkins KE
    Brain Lang; 2014 Apr; 131():25-35. PubMed ID: 23819900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced fractional anisotropy in the anterior corpus callosum is associated with reduced speech fluency in persistent developmental stuttering.
    Civier O; Kronfeld-Duenias V; Amir O; Ezrati-Vinacour R; Ben-Shachar M
    Brain Lang; 2015 Apr; 143():20-31. PubMed ID: 25728013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting structural connectivity of the left and right inferior frontal cortex in children who stutter.
    Neef NE; Angstadt M; Koenraads SPC; Chang SE
    Cereb Cortex; 2023 Mar; 33(7):4085-4100. PubMed ID: 36057839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dorsal and ventral language pathways in persistent developmental stuttering.
    Kronfeld-Duenias V; Amir O; Ezrati-Vinacour R; Civier O; Ben-Shachar M
    Cortex; 2016 Aug; 81():79-92. PubMed ID: 27179916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous white matter morphology in adults who stutter.
    Cieslak M; Ingham RJ; Ingham JC; Grafton ST
    J Speech Lang Hear Res; 2015 Apr; 58(2):268-77. PubMed ID: 25635376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses.
    Neef NE; Bütfering C; Anwander A; Friederici AD; Paulus W; Sommer M
    Neuroimage; 2016 Nov; 142():628-644. PubMed ID: 27542724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of left inferior frontal-premotor structural and functional connectivity deficits in adults who stutter.
    Chang SE; Horwitz B; Ostuni J; Reynolds R; Ludlow CL
    Cereb Cortex; 2011 Nov; 21(11):2507-18. PubMed ID: 21471556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond production: Brain responses during speech perception in adults who stutter.
    Halag-Milo T; Stoppelman N; Kronfeld-Duenias V; Civier O; Amir O; Ezrati-Vinacour R; Ben-Shachar M
    Neuroimage Clin; 2016; 11():328-338. PubMed ID: 27298762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain anatomy differences in childhood stuttering.
    Chang SE; Erickson KI; Ambrose NG; Hasegawa-Johnson MA; Ludlow CL
    Neuroimage; 2008 Feb; 39(3):1333-44. PubMed ID: 18023366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural network connectivity differences in children who stutter.
    Chang SE; Zhu DC
    Brain; 2013 Dec; 136(Pt 12):3709-26. PubMed ID: 24131593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.