These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 29228332)

  • 21. Cas4/1 dual nuclease activities enable prespacer maturation and directional integration in a type I-G CRISPR-Cas system.
    Dhingra Y; Sashital DG
    bioRxiv; 2023 Jun; ():. PubMed ID: 37333257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli.
    Díez-Villaseñor C; Guzmán NM; Almendros C; García-Martínez J; Mojica FJ
    RNA Biol; 2013 May; 10(5):792-802. PubMed ID: 23445770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cas1 and Cas2 From the Type II-C CRISPR-Cas System of
    He Y; Wang M; Liu M; Huang L; Liu C; Zhang X; Yi H; Cheng A; Zhu D; Yang Q; Wu Y; Zhao X; Chen S; Jia R; Zhang S; Liu Y; Yu Y; Zhang L
    Front Cell Infect Microbiol; 2018; 8():195. PubMed ID: 29951376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular recordings by directed CRISPR spacer acquisition.
    Shipman SL; Nivala J; Macklis JD; Church GM
    Science; 2016 Jul; 353(6298):aaf1175. PubMed ID: 27284167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
    Yang H; Patel DJ
    Mol Cell; 2017 Jul; 67(1):117-127.e5. PubMed ID: 28602637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR type II-A subgroups exhibit phylogenetically distinct mechanisms for prespacer insertion.
    Van Orden MJ; Newsom S; Rajan R
    J Biol Chem; 2020 Aug; 295(32):10956-10968. PubMed ID: 32513871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets.
    Biswas A; Gagnon JN; Brouns SJ; Fineran PC; Brown CM
    RNA Biol; 2013 May; 10(5):817-27. PubMed ID: 23492433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA binding specificities of Escherichia coli Cas1-Cas2 integrase drive its recruitment at the CRISPR locus.
    Moch C; Fromant M; Blanquet S; Plateau P
    Nucleic Acids Res; 2017 Mar; 45(5):2714-2723. PubMed ID: 28034956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A moonlighting nuclease puts CRISPR in its place.
    Lawrence CM
    J Biol Chem; 2020 Mar; 295(11):3415-3416. PubMed ID: 32169855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structures of the CRISPR genome integration complex.
    Wright AV; Liu JJ; Knott GJ; Doxzen KW; Nogales E; Doudna JA
    Science; 2017 Sep; 357(6356):1113-1118. PubMed ID: 28729350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems.
    Rouillon C; Athukoralage JS; Graham S; Grüschow S; White MF
    Methods Enzymol; 2019; 616():191-218. PubMed ID: 30691643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation.
    Musharova O; Klimuk E; Datsenko KA; Metlitskaya A; Logacheva M; Semenova E; Severinov K; Savitskaya E
    Nucleic Acids Res; 2017 Apr; 45(6):3297-3307. PubMed ID: 28204574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Cas4-Cas1-Cas2 complex mediates precise prespacer processing during CRISPR adaptation.
    Lee H; Dhingra Y; Sashital DG
    Elife; 2019 Apr; 8():. PubMed ID: 31021314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing the Behaviour of Cas1-Cas2 upon Protospacer Binding in CRISPR-Cas Systems using Molecular Dynamics Simulations.
    Wan H; Li J; Chang S; Lin S; Tian Y; Tian X; Wang M; Hu J
    Sci Rep; 2019 Feb; 9(1):3188. PubMed ID: 30816277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Details of DNA Integration by CRISPR-Associated Proteins During Adaptation in Bacteria and Archaea.
    Flusche T; Rajan R
    Adv Exp Med Biol; 2023; 1414():27-43. PubMed ID: 35852729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas.
    Hickman AB; Kailasan S; Genzor P; Haase AD; Dyda F
    Elife; 2020 Jan; 9():. PubMed ID: 31913120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstitution of CRISPR adaptation in vitro and its detection by PCR.
    Fagerlund RD; Ferguson TJ; Maxwell HWR; Opel-Reading HK; Krause KL; Fineran PC
    Methods Enzymol; 2019; 616():411-433. PubMed ID: 30691653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of spacer acquisition by sequential assembly of the adaptation module in Synechocystis.
    Wu C; Tang D; Cheng J; Hu D; Yang Z; Ma X; He H; Yao S; Fu TM; Yu Y; Chen Q
    Nucleic Acids Res; 2021 Mar; 49(5):2973-2984. PubMed ID: 33619565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptation by Type V-A and V-B CRISPR-Cas Systems Demonstrates Conserved Protospacer Selection Mechanisms Between Diverse CRISPR-Cas Types.
    Wu WY; Jackson SA; Almendros C; Haagsma AC; Yilmaz S; Gort G; van der Oost J; Brouns SJJ; Staals RHJ
    CRISPR J; 2022 Aug; 5(4):536-547. PubMed ID: 35833800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cas4-Cas1 Is a Protospacer Adjacent Motif-Processing Factor Mediating Half-Site Spacer Integration During CRISPR Adaptation.
    Kieper SN; Almendros C; Haagsma AC; Barendregt A; Heck AJR; Brouns SJJ
    CRISPR J; 2021 Aug; 4(4):536-548. PubMed ID: 34406043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.